Skip to main content
Log in

Holomorphic Line Bundles over a Tower of Coverings

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study a tower of normal coverings over a compact Kähler manifold with holomorphic line bundles. When the line bundle is sufficiently positive, we obtain an effective estimate, which implies the Bergman stability. As a consequence, we deduce the equidistribution for zero currents of random holomorphic sections. Furthermore, we obtain a variance estimate for those random zero currents, which yields the almost sure convergence under some geometric condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloom, T., Levenberg, N.: Random polynomials and pluripotential-theoretic extremal functions. Potential Anal. (2014). doi:10.1007/s11118-014-9435-4

  2. Bleher, P., Shiffman, B., Zelditch, S.: Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142(2), 351–395 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borel, A.: Compact Clifford–Klein forms of symmetric spaces. Topology 2, 111–122 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  4. Catlin, D.: The Bergman kernel and a theorem of Tian. Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math, pp. 1–23. Birkhäuser, Boston, MA (1999)

  5. Cheeger, J., Gromov, M.: On the Characteristic Numbers of Complete Manifolds of Bounded Curvature and Finite Volume, Differential Geometry and Complex Analysis, pp. 115–154. Springer, Berlin (1985)

    MATH  Google Scholar 

  6. Chen, B., Fu, S.: Stability of the Bergman kernel on a tower of coverings. arXiv:1202.4371

  7. Coman, D., Marinescu, G.: Equidistribution results for singular metrics on line bundles. Ann. Sci. Éc. Norm. Supér. arXiv:1108.5163

  8. DeGeorge, D., Wallach, N.: Limit formulas for multiplicities in \(L^2(G / \Gamma )\). Ann. Math. (2) 107, 133–150 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delin, H.: Pointwise estimates for the weighted Bergman projection kernel in \(\mathbf{C}^n\), using a weighted \(L^2\) estimate for the \(\overline{\partial }\) equation. Ann. Inst. Fourier (Grenoble) 48(4), 967–997 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demailly, J.-P.: Estimations \(L^{2}\) pour l’opérateur \(\bar{\partial }\) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup. (4) 15(3), 457–511 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Donnelly, H.: On the spectrum of towers. Proc. Am. Math. Soc. 87(2), 322–329 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donnelly, H.: Elliptic operators and covers of Riemannian manifolds. Math. Z. 223, 303–308 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Greene, R.E., Wu, H.: Function theory on manifolds which possess a pole. Lecture Notes in Mathematics, vol. 699. Springer, Berlin (1979). ISBN: 3-540-09108-4

  14. Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley Classics Library. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  15. Hezari, H., Kelleher, C., Seto, S., Xu, H.: Asymptotic expansion of the Bergman kernel via perturbation of the Bargmann-Fock model. arXiv:1411.7438

  16. Karami, A.: Zeros of random Reinhardt polynomials. Complex Var. Elliptic Equ. 60(6), 801–828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kazhdan, D.: On Arithmetic Varieties, Lie Groups and Their Representations. Halsted, New York (1975)

    Google Scholar 

  18. Lindholm, N.: Sampling in weighted \(L^p\) spaces of entire functions in \({\mathbb{C}}^n\) and estimates of the Bergman kernel. J. Funct. Anal. 182(2), 390–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu, Z., Zelditch, S.: Szegő kernels and Poincaré series. arXiv:1309.7088v2 [math.CV]

  20. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, vol. 254. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  21. Ma, X., Marinescu, G.: Exponential estimate for the asymptotics of Bergman kernels. arXiv:1310.3776

  22. Ohsawa, T.: A remark on Kazhdan’s theorem on sequences of Bergman metrics. Kyushu J. Math. 63, 133–137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rhodes, J.A.: Sequences of metrics on compact Riemann surfaces. Duke Math. J. 72, 725–738 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. International Press, Cambridge, MA (1994)

    MATH  Google Scholar 

  25. Shiffman, B.: Applications of Geometric Measure Theory to Value Distribution Theory for Meromorphic Maps, Value-distribution Theory, Part A. Dekker, New York (1974)

    MATH  Google Scholar 

  26. Shiffman, B., Zelditch, S.: Distribution of zeros of random and quantum chaotic sections of positive line bundles. Commun. Math. Phys. 200(3), 661–683 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shiffman, B., Zelditch, S.: Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds. J. Reine Angew. Math. 544, 181–222 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Shiffman, B., Zelditch, S.: Random polynomials of high degree and Levy concentration of measure. Asian J. Math. 7(4), 627–646 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shiffman, B., Zelditch, S.: Number variance of random zeros on complex manifolds. Geom. Funct. Anal. 18(4), 1422–1475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32(1), 99–130 (1990)

    MATH  Google Scholar 

  31. To, W.: Distribution of zeros of sections of canonical line bundles over towers of covers. J. Lond. Math. Soc. (2) 63(2), 387–399 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yau, S.-T.: Nonlinear Analysis in Geometry. Monographies de L’Enseignement Mathématique, vol. 33, p. 54. L’Enseignement Mathématique, Geneva (1986)

    Google Scholar 

  33. Yeung, S.: Betti numbers on a tower of coverings. Duke Math. J. 73(1), 201–226 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yeung, S.: Very ampleness of line bundles and canonical embedding of coverings of manifolds. Compositio Math. 123(2), 209–223 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yeung, S.: A tower of coverings of quasi-projective varieties. Adv. Math. 230(3), 1196–1208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zelditch, S.: Szegő kernels and a theorem of Tian. Int. Math. Res. Notices 6, 317–331 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, J.: Hole probabilities of SU(m+1) Gaussian random polynomials. Anal. PDE arXiv:1404.0050

Download references

Acknowledgments

The authors would like to thank Professor Bernard Shiffman and Professor Steve Zelditch for their helpful discussions and Professor Xiaojun Huang for his constant support. The authors also would like to thank the referee for the penetrating comments. Part of the work was done when the first author was visiting Capital Normal University in China and the second author was visiting Syracuse University. They are grateful to both departments for the warm hospitality. Yuan Yuan was Supported in part by National Science Foundation Grant DMS-1412384.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyan Zhu.

Appendix

Appendix

We include a proof of the Bergman stability as stated in Theorem 1.3 by using the standard Hörmander–Demailly type \(L^2\) estimate, for a slightly more general setup (complete noncompact base manifold with bounded geometry). The proof is well known to the experts, which we record here for its independent interest.

Proposition 5.3

Assume the Kähler manifold \((M,\omega _h)\) is complete (not necessarily compact), and satisfies the following geometric finite conditions:

  1. (a)

    The sectional curvature of \((M, \omega _h)\) is uniformly bounded;

  2. (b)

    The injectivity radius of \((M, \omega _h)\) is uniformly bounded from below by \(R>0\).

Then there exists some \(N_4=N_4(M,L,h)>0\) such that any tower of normal coverings with line bundles \(\{(M_j,L^N)\}\) is Bergman stable whenever \(N\ge N_4\).

Proof

We essentially follow the argument of [31] (see also [6, 35]) to break the argument into two parts:

  1. (i)

    \(\displaystyle \limsup _{j\rightarrow \infty }|\Pi _{j,L^N}\left( p_j(z),p_j(z)\right) |_{h^N}\le |\tilde{\Pi }_{L^N}(z,z)|_{h^N}\) for any \(z\in \tilde{M}\) and any \(N\ge 1\);

  2. (ii)

    \(\displaystyle \liminf _{j\rightarrow \infty }|\Pi _{j,L^N}\left( p_j(z),p_j(z)\right) |_{h^N}\ge |\tilde{\Pi }_{L^N}(z,z)|_{h^N}\) for any \(z\in \tilde{M}\) and any \(N\ge N_4\).

Part (i) follows by a straightforward normal family argument (cf. [6, 31, 35]) which we will omit here, while part (ii) is a combination of Hörmander’s \(L^2\)-estimate and Agmon estimates. For any \(z\in \tilde{M}\), define \(\tau _j(z)=\inf \left\{ dist(z,\gamma _j z):\ \gamma _j\in \Gamma _j\setminus \{1\}\right\} \). Then \(p_j|_{B(z,{\textstyle \frac{1}{2}}\tau _j(z))}\) is one-to-one and \(p_j|_{B(z,{\textstyle \frac{1}{2}}\tau _j(z))}:B(z,{\textstyle \frac{1}{2}}\tau _j(z))\rightarrow p_j\left( B(z,{\textstyle \frac{1}{2}}\tau _j(z))\right) \) is a biholomorphism. It is proved in [8] that \(\tau _j(z) \rightarrow \infty \) uniformly on compact subsets of \(\tilde{M}\), as \(j \rightarrow \infty \).

Now fix a point \(x \in \tilde{M}\). We only need to show the case that \(\tilde{\Pi }_{L^N}(x,x)\ne 0\). Let \(\rho (\cdot )=dist(\cdot , x)\in \mathcal {C}^0(\tilde{M})\) and \(x_j=p_j(x) \in M_j\) for any \(j \ge 0\).

Step 1 Define sections \(\{T_j\in \Gamma (M_j,L^N)\}\).

Consider the coherent state

$$\begin{aligned} S_{x}(y):=\frac{\tilde{\Pi }_{L^N}(y, x)}{\sqrt{\tilde{\Pi }_{L^N}(x, x)}}. \end{aligned}$$

Then \(S_{x} \in SH^0(\tilde{M},L^N)\) and \(|S_{x}(x)|_{h^N}^2=|\tilde{\Pi }_{L^N}(x, x)|_{h^N}\). For any \(j\ge 0\), let \(\tilde{T}_j(y)=\chi _j(\rho (y))S_{x}(y)\in \Gamma (\tilde{M},L^N)\), where the nonincreasing function \(\chi _j\in \mathcal {C}_c^{\infty }([0,\infty ),{\mathbb R}^+)\) satisfies \(\chi _j(r)=1\) for \(0\le r\le \frac{1}{4}\tau _j(x)\), \(\chi _j(r)=0\) for \(r\ge \frac{1}{3}\tau _j(x)\) and \(\Vert \chi '_j\Vert _{\infty }=O(\tau _j(x)^{-1})\). Since \(p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))}\) is one-to-one, the sections \(\{T_j\in \Gamma (M_j,L^N)\}\) are defined as follows:

$$\begin{aligned} T_j(z)= {\left\{ \begin{array}{ll} \tilde{T}_j\left( \Big (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))}\Big )^{-1}(z)\right) &{}\quad \text {if} ~z\in p_j(B(x,{\textstyle \frac{1}{2}}\tau _j(x))), \\ 0 &{}\quad \text {otherwise}. \end{array}\right. } \end{aligned}$$

Step 2 Construct potential functions \(\{\phi _j\}\) following [34].

The construction is due to [34]. Since the injectivity radius of the base manifold \(M=M_0\) is bounded from below by \(R>0\), then the injectivity radius of \(M_j\) at \(x_j\) is at least \(R\) since injectivity radius is nondecreasing along the tower of coverings. Let \(\delta \in \mathcal {C}^{\infty }_c([0,\infty ),{\mathbb R}^+)\) (fixed and independent of \(j\)) be a nonincreasing cut-off function satisfying \(\delta (r)=1\) for \(0\le r\le \frac{1}{2}R\) and \(\delta (r)=0\) for \(r\ge R\). In addition, one can pick up \(\delta (r)\) so that \(-\frac{2+1}{R} \le \delta '(r) \le 0\) and \(\left| \delta ''(r) \right| \le \frac{4(2+1)}{r^2}\). As \(\tau _j(x) \rightarrow \infty \) as \(j \rightarrow \infty \), by choosing \(j\) sufficiently large, we can always assume that \(\tau _j(x) > 4R\). Define a function on \(\tilde{M}\) by

$$\begin{aligned} \phi (y)= \log \left( \frac{4 \rho ^2(y)}{R^2} \right) \times \delta (\rho (y)). \end{aligned}$$

Then the potential function \(\phi _j\) on \(M_j\) is defined by

$$\begin{aligned} \phi _j(z)= {\left\{ \begin{array}{ll} n \phi \left( \Big (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))}\Big )^{-1}(z)\right) &{}\quad \text {if} ~z\in p_j(B(x,{\textstyle \frac{1}{2}}\tau _j(x))), \\ 0 &{}\quad \text {otherwise}. \end{array}\right. } \end{aligned}$$

As the sectional curvature of \(M_j\) is uniformly bounded independent of \(j\), by the Hessian comparison theorem [13], as shown in [34], one can control the complex Hessian of \(\phi _j\) to have

$$\begin{aligned} \frac{\sqrt{-1}}{2} \partial \bar{\partial }\phi _j \ge -K \omega _h, \end{aligned}$$

where the positive constant \(K=K(M,L,h)\) is independent of \(j\) and the base point \(x \in \tilde{M}\).

Step 3 Apply Hörmander’s theorem to solve \(\bar{\partial }\)-equation \(\bar{\partial }T'_j=\bar{\partial }T_j\).

There exists \(N_4'=N_4'(M,L,h) >0\), such that

$$\begin{aligned} NRic(h)+\frac{\sqrt{-1}}{2}\partial \bar{\partial }\phi _j+Ric(\omega _h) \ge \omega _h ~\text { for}~ N \ge N_4' . \end{aligned}$$
(6.1)

For \(N\ge N_4'\) and sufficiently large \(j\), we consider the line bundle \((L^N,h^Ne^{-\phi _j})\rightarrow (M_j,dV_h)\). By (6.1), we apply Hörmander’s \(L^2\)-estimate for the \(\bar{\partial }\)-equation (cf. [10] Theorem 5.1). There exists \(T'_j\in L^2(M_j,(L^N,h^Ne^{-\phi _j}))\), such that \(\bar{\partial }T'_j=\bar{\partial }T_j\) with

$$\begin{aligned} \Vert T'_j\Vert ^2_{L^2(h^Ne^{-\phi _j})}\!=\!\!\int _{M_j} |T'_j|^2_{h^N}e^{-\phi _j}dV_h \!\le \!\int _{M_j}|\bar{\partial }T_j|^2_{(h^N,\omega _h)}e^{-\phi _j}dV_h\!=\! \Vert \bar{\partial }T_j\Vert ^2_{L^2(h^Ne^{-\phi _j})}. \end{aligned}$$
(6.2)

Note that \(\bar{\partial } T_j\) is supported in \(p_j\left( \bar{B}(x,\frac{1}{3}\tau _j(x))\setminus B(x,\frac{1}{4}\tau _j(x))\right) =p_j(\bar{B}(x,\frac{1}{3}\tau _j(x)))\setminus p_j(B(x,\frac{1}{4}\tau _j(x)))\). For any \(z\in p_j(B(x,{\textstyle \frac{1}{2}}\tau _j(x)))\),

$$\begin{aligned} \bar{\partial }T_j(z)= & {} \bar{\partial }\left[ \chi _j\left( \rho \circ (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))})^{-1}(z) \right) S_x \left( (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))})^{-1}(z)\right) \right] \\= & {} \chi '_j\left( \rho \circ (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))})^{-1}(z) \right) \bar{\partial }\rho \left( (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))})^{-1}(z) \right) \\&\quad \times S_{x}\left( (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))})^{-1}(z)\right) . \end{aligned}$$

The distance function \(\rho \) is differentiable almost everywhere (away from the cut-locus). Moreover, we have \(|\bar{\partial }\rho |_{\omega _h}^2={\textstyle \frac{1}{2}}|d\rho |_{\omega _h}^2={\textstyle \frac{1}{2}}\) almost everywhere. Hence for almost every \(z\in p_j(B(x,{\textstyle \frac{1}{2}}\tau _j(x)))\),

$$\begin{aligned} |\bar{\partial }T_j(z)|^2_{(h^N,\omega _h)}\!= {\textstyle \frac{1}{2}}\left| \chi '_j\left( \!\Big (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))}\Big )^{-1}(z)\!\right) \right| ^2\ \left| S_{x}\left( \!\Big (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))}\Big )^{-1}(z)\!\right) \right| ^2_{h^N}. \end{aligned}$$
(6.3)

From the definition of \(\chi _j\),

$$\begin{aligned} \left| \chi '_j\left( \Big (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))}\Big )^{-1}(z)\right) \right| ^2\lesssim \tau _j(x)^{-2}. \end{aligned}$$
(6.4)

Applying Agmon estimates on the support of \(\bar{\partial }T_j\), when \(N\ge N_0\),

$$\begin{aligned} \left| S_x\left( \Big (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))}\Big )^{-1}(z)\right) \right| ^2_{h^N}\lesssim e^{-2\beta \sqrt{N}\frac{1}{4}\tau _j(x)}=e^{-{\textstyle \frac{1}{2}}\beta \sqrt{N}\tau _j(x)}, \end{aligned}$$
(6.5)

provided that \(j\ge 0\) is large enough to satisfy \(\frac{1}{4}\tau _j(x) \ge 1\). Combining (6.3), (6.4) and (6.5), we have that for \(j\) large enough, the following holds almost everywhere in \(p_j(B(x,{\textstyle \frac{1}{2}}\tau _j(x)))\):

$$\begin{aligned} |\bar{\partial }T_j|^2_{(h^N,\omega _h)}\lesssim \tau _j(x)^{-2}e^{-{\textstyle \frac{1}{2}}\beta \sqrt{N}\tau _j(x)}. \end{aligned}$$
(6.6)

As \(\bar{\partial }T_j\) is supported in \(p_j(\bar{B}(x,\frac{1}{3}\tau _j(x)))\setminus p_j(B(x,\frac{1}{4}\tau _j(x)))\) and \(\phi _j\) is supported in \(p_j(B(x,R))\), \(\phi _j=0\) in the support of \(\bar{\partial }T_j\) for \(j\) large enough. Therefore, for such \(j\), by (6.6),

$$\begin{aligned} \Vert \bar{\partial }T_j\Vert ^2_{L^2(h^Ne^{-\phi _j})}= & {} \int _{M_j} |\bar{\partial }T_j|^2_{(h^N,\omega _h)}e^{-\phi _j}dV_h\\\lesssim & {} \tau _j(x)^{-2}e^{-{\textstyle \frac{1}{2}}\beta \sqrt{N}\tau _j(x)} \int _{p_j(B(x,{\textstyle \frac{1}{2}}\tau _j(x)))}\ dV_h \\= & {} \tau _j(x)^{-2}e^{-{\textstyle \frac{1}{2}}\beta \sqrt{N}\tau _j(x)}V({B(x,{\textstyle \frac{1}{2}}\tau _j(x))}). \end{aligned}$$

Since the Ricci curvature of \(\tilde{M}\) has a lower bound, by the Bishop volume comparison theorem, \(V(B(x,{\textstyle \frac{1}{2}}\tau _j(x)))\ dV_h\) grows at most exponentially. In other words, there exists \(C=C(M,L,h)>0\) such that \(V(B(x,{\textstyle \frac{1}{2}}\tau _j(x)))\le e^{\frac{C}{2}\tau _j(x)}\). Hence

$$\begin{aligned} \Vert \bar{\partial }T_j\Vert ^2_{L^2(h^Ne^{-\phi _j})} \lesssim \tau _j(x)^{-2}e^{-{\textstyle \frac{1}{2}}\beta \sqrt{N}\tau _j(x)}e^{\frac{C}{2} \tau _j(x)}=\tau _j(x)^{-2}e^{-{\textstyle \frac{1}{2}}(\beta \sqrt{N}-C)\tau _j(x)}. \end{aligned}$$

Denote \(N_4''=N_4''(M,L,h)=\max \big \{\big \lfloor \big (\frac{C+2}{\beta }\big )^2\big \rfloor +1,N_0\big \}\). Then for \(N\ge N_4''\), \(\beta \sqrt{N}-C>2\),

$$\begin{aligned} \Vert \bar{\partial }T_j\Vert ^2_{L^2(h^Ne^{-\phi _j})} \lesssim \tau _j(x)^{-2}e^{-\tau _j(x)}. \end{aligned}$$
(6.7)

Take \(N_4=\max \{N_4',N_4''\}\). By the \(L^2\)-estimate (6.2), for \(N\ge N_4\) and \(j\) large enough, then

$$\begin{aligned} \Vert T'_j\Vert ^2_{L^2(h^N e^{-\phi _j})}=\int _{M_j}|T'_j|^2_{h^N}e^{-\phi _j}dV_h \lesssim \tau _j(x)^{-2}e^{-\tau _j(x)} < \infty . \end{aligned}$$

As \(\phi _j\le \log 4\), \(e^{-\phi _j}\ge \frac{1}{4}\), then

$$\begin{aligned} \Vert T'_j\Vert ^2_{L^2(h^N)}\lesssim \Vert T'_j\Vert ^2_{L^2(h^Ne^{-\phi _j})} \lesssim \tau _j(x)^{-2}e^{-\tau _j(x)}\rightarrow 0, ~\text {as}~j \rightarrow \infty . \end{aligned}$$
(6.8)

Step 4 Conclusion.

Let \(S_j:=T_j-T'_j\). Then \(S_j\) satisfies following properties for \(N \ge N_4\) and for \(j\) sufficiently large:

  1. (1)

    \(\bar{\partial }S_j=\bar{\partial }T_j-\bar{\partial }T'_j=0\). This implies \( S_j\in H^0(M_j,L^N)\) and thus \(T'_j\in \Gamma (M_j,L^N)\).

  2. (2)

    Since \(e^{-\phi _j(z)}\sim \Big (\rho \circ \Big (p_j|_{B(x,{\textstyle \frac{1}{2}}\tau _j(x))}\Big )^{-1}(z)\Big )^{-2n}=dist(z,x_j)^{-2n}\) near \(x_j\), \(|T'_j|^2_{h^N}e^{-\phi _j}\) is not locally integrable unless we have \(T'_j(x_j)=0\). Therefore \(S_j(x_j)=T_j(x_j)-T'_j(x_j)=T_j(x_j)\), which implies that \(|S_j(x_j)|^2_{h^N}=|T_j(x_j)|^2_{h^N}=|S_{x}(x)|^2_{h^N}=|\tilde{\Pi }_{L^N}(x, x)|_{h^N}>0\).

  3. (3)
    $$\begin{aligned} 0<\Vert S_j\Vert _{L^2(h^N)}= & {} \Vert T_j-T'_j\Vert _{L^2(h^N)}\le \Vert T_j\Vert _{L^2(h^N)}+\Vert T'_j\Vert _{L^2(h^N)} \\\le & {} \Vert S_{x}\Vert _{L^2(h^N)}+\Vert T'_j\Vert _{L^2(h^N)} \\= & {} 1+\Vert T'_j\Vert _{L^2(h^N)}. \end{aligned}$$

Define \(F_j=\frac{S_j}{\Vert S_j\Vert _{L^2(h^N)}}\in SH^0(M_j,L^N)\). Therefore, by the extremal property of the Bergman kernel,

$$\begin{aligned}&|\Pi _{j,L^N}\left( p_j(x),p_j(x)\right) |_{h^N}=|\Pi _{j,L^N}(x_j, x_j)|_{h^N}\ge |F_j(x_j)|^2_{h^N}\\&\quad =\frac{|S_j(x_j)|^2_{h^N}}{\Vert S_j\Vert ^2_{L^2(h^N)}}\ge \frac{|\tilde{\Pi }_{L^N}(x, x)|_{h^N}}{(1+\Vert T'_j\Vert _{L^2(h^N)})^2}. \end{aligned}$$

By (6.8), for \(N\ge N_4\),

$$\begin{aligned} \liminf _{j\rightarrow \infty }|\Pi _{j,L^N}\left( p_j(x),p_j(x) \right) |_{h^N}\ge |\tilde{\Pi }_{L^N}(x,x)|_{h^N}. \end{aligned}$$

Hence part (ii) is proved as \(x \in \tilde{M}\) is arbitrary. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Zhu, J. Holomorphic Line Bundles over a Tower of Coverings. J Geom Anal 26, 2013–2039 (2016). https://doi.org/10.1007/s12220-015-9617-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9617-3

Keywords

Mathematics Subject Classification

Navigation