Skip to main content
Log in

Generalized Ricci Solitons

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We introduce a class of overdetermined systems of partial differential equations of finite type on (pseudo-) Riemannian manifolds that we call the generalized Ricci soliton equations. These equations depend on three real parameters. For special values of the parameters they specialize to various important classes of equations in differential geometry. Among them there are: the Ricci soliton equations, the vacuum near-horizon geometry equations in general relativity, special cases of Einstein–Weyl equations and their projective counterparts, equations for homotheties and Killing’s equation. We also prolong the generalized Ricci soliton equations and, by computing differential constraints, we find a number of necessary conditions for a (pseudo-) Riemannian manifold \((M, g)\) to locally admit non-trivial solutions to the generalized Ricci soliton equations in dimensions 2 and 3. The paper provides also a collection of explicit examples of generalized Ricci solitons in dimensions 2 and 3 (in some cases).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderbank, D.M.J., Pedersen, H.: Einstein–Weyl geometry. In: LeBrun, C., Wang, M. (Eds.) Surveys in Differential Geometry, vol. VI: Essays on Einstein Manifolds, Suppl. to Journal of Differential Geometry

  2. Cao, H.-D.: Recent progress on Ricci solitons. Adv. Lect. Math. 11(2), 1–38 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Catino, G., Mastrolia, P., Monticelli, D.D., Rigoli, M.: On the geometry of gradient Einstein-type manifolds. arXiv:1402.3453

  4. Chow, B., et al.: The Ricci Flow: Techniques and Applications, Part I. Geometric Aspects. Mathematical Surveys and Monographs, vol. 135. American Mathematical Society, Providence (2007)

    Google Scholar 

  5. Chruściel, P.T., Reall, H.S., Tod, P.: On non-existence of static vacuum black holes with degenerate components of the event horizon. Class. Quantum Gravity 23, 549–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Darboux, G.: Leçons sur la théorie générale des surfaces, vol. III. Chelsea Publishing, New York (1898)

    Google Scholar 

  7. Dunajski, M.: Overdetermined PDEs (2008). http://www.damtp.cam.ac.uk/user/md327/PDElecture. Accessed June 2014

  8. Dunajski, M., Mason, L.J., Tod, K.P.: Einstein–Weyl geometry, the dKP equation and twistor theory. J. Geom. Phys. 37, 63–93 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hájíček, P.: Three remarks on axisymmetric stationary horizons. Commun. Math. Phys. 36, 305–320 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jezierski, J.: On the existence of Kundt’s metrics and degenerate (or extremal) Killing horizons. Class. Quantum Gravity 26, 035011 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jezierski, J., Káminski, B.: Towards uniqueness of degenerate axially symmetric Killing horizon. Gen. Relativ. Gravit. 45, 987–1004 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kruglikov, B.: Invariant characterisation of Liouville metrics and polynomial integrals. J. Geom. Phys. 58, 979–995 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kryński, W.: Webs and projective structures on a plane. arXiv:1303.4912 (2013)

  14. Kunduri, H.K., Lucietti, J.: A classification of near-horizon geometries of extremal vacuum black holes. J. Math. Phys. 50, 082502 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kunduri, H.K., Lucietti, J.: An infinite class of extremal horizons in higher dimensions. Commun. Math. Phys. 303, 31–71 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kunduri, H.K., Lucietti, J.: Extremal Sasakian horizons. Phys. Lett. B 713, 308–312 (2012)

    Article  MathSciNet  Google Scholar 

  17. Kunduri, H.K., Lucietti, J.: Classification of near-horizon geometries of extremal black holes. Living Rev. Relativ. 16, 8 (2013)

    Article  MATH  Google Scholar 

  18. Lewandowski, J., Pawlowski, T.: Extremal isolated horizons: a local uniqueness theorem. Class. Quantum Gravity 20, 587–606 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Matveev, V., Shevchishin, V.V.: Differential invariants for cubic integrals of geodesic flows on surfaces. J. Geom. Phys. 60, 833–856 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Randall, M.: Aspects of overdetermined systems of partial differential equations in projective and conformal differential geometry, Ph.D. thesis, ANU (2013)

  21. Randall, M.: Local obstructions to projective surfaces admitting skew-symmetric Ricci tensor. J. Geom. Phys. 76, 192–199 (2014). doi:10.1016/j.geomphys.2013.10.019

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Both authors would like to acknowledge Wojciech Kryński for organizing the workshop “Geometry of Projective Structures and Differential Equations” in Warsaw, where this work was initialized. We also wish to thank Piotr Chruściel, Jacek Jezierski and Paul Tod for helpful discussions. Special thanks are due to Gil Bor for his help in Sect. 7.4.1. This research was supported by the Polish National Science Center (NCN) via Grant DEC-2013/09/B/ST1/01799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Randall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurowski, P., Randall, M. Generalized Ricci Solitons. J Geom Anal 26, 1280–1345 (2016). https://doi.org/10.1007/s12220-015-9592-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9592-8

Keywords

Mathematics Subject Classification

Navigation