Skip to main content
Log in

The Sasaki Join, Hamiltonian 2-Forms, and Constant Scalar Curvature

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We describe a general procedure for constructing new explicit Sasaki metrics of constant scalar curvature (CSC), including Sasaki–Einstein metrics, from old ones. We begin by taking the join of a regular Sasaki manifold of dimension \(2n+1\) and constant scalar curvature with a weighted Sasakian 3-sphere. Then by deforming in the Sasaki cone we obtain CSC Sasaki metrics on compact Sasaki manifolds \(M_{l_1,l_2,\mathbf{w}}\) of dimension \(2n+3\) which depend on four integer parameters \(l_1,l_2,w_1,w_2\). Most of the CSC Sasaki metrics are irregular. We give examples which show that the CSC rays are often not unique on the underlying fixed strictly pseudoconvex CR manifold. Moreover, it is shown that when the first Chern class of the contact bundle vanishes, there is a two-dimensional subcone of Sasaki–Ricci solitons in the Sasaki cone, and a unique Sasaki–Einstein metric in each of the two-dimensional subcones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In particular, there we chose \(w_1\le w_2\); whereas, here we use the opposite convention, \(w_1\ge w_2\).

  2. See also this proof for the scaling factor between the admissible metric and the resulting transverse metric. The reciprocal of this scaling factor applies to the lift of \(V\) above and thus it is easy to see that the resulting vector field (which is basically just a multiple of \(H_1\)) on the Sasaki manifold depends smoothly on \(v_1\) and \(v_2\) as well. (see also Lemma 7.1 in [12]).

References

  1. Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: Hamiltonian 2-forms in Kähler geometry. I. General theory. J. Differ. Geom. 73(3), 359–412 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Hamiltonian \(2\)-forms in Kähler geometry. II. Global classification. J. Differ. Geom. 68(2), 277–345 (2004)

  3. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry. III. Extremal metrics and stability. Invent. Math. 173(3), 547–601 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry. IV. Weakly Bochner-flat Kähler manifolds. Comm. Anal. Geom. 16(1), 91–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyer, C.P., Galicki, K.: On Sasakian–Einstein geometry. Int. J. Math. 11(7), 873–909 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyer, C.P., Galicki, K.: Sasakian Geometry, Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  7. Boyer, C.P., Galicki, K., Ornea, L.: Constructions in Sasakian geometry. Math. Z. 257(4), 907–924 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyer, C.P., Galicki, K., Simanca, S.R.: Canonical Sasakian metrics. Commun. Math. Phys. 279(3), 705–733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boyer, C.P.: Extremal Sasakian metrics on \(S^3\)-bundles over \(S^2\). Math. Res. Lett. 18(1), 181–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyer, C.P.: Maximal tori in contactomorphism groups. Differ. Geom. Appl. 31(2), 190–216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyer, C.P., Pati, J.: On the equivalence problem for toric contact structures on \(S^3\)-bundles over \(S^2\). Pac. J. Math. 267(2), 277–324 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boyer, C.P., Tønnesen-Friedman, C.W.: Extremal Sasakian geometry on \(T^2\times S^3\) and related manifolds. Compos. Math. 149(8), 1431–1456 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boyer, C.P., Tønnesen-Friedman, C.W.: The Sasaki Join, Hamiltonian 2-Forms, and Sasaki–Einstein Metrics, preprint; arXiv:1309.7067 [math.DG] (2013)

  14. Boyer, C.P., Tønnesen-Friedman, C.W.: Sasakian manifolds with perfect fundamental groups. Afr. Diaspora J. Math. 14(2), 98–117 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Boyer, C.P., Tønnesen-Friedman, C.W.: Extremal Sasakian Geometry on \({ S}^3\)-Bundles Over Riemann Surfaces. Int. Math. Res. Not. (20), 5510–5562 (2014)

  16. Boyer, C.P., Tønnesen-Friedman, C.W.: On the topology of some Sasaki-Einstein manifolds. NYJM (to appear) (2015)

  17. Boyer, C.P., Tønnesen-Friedman, C.W.: The Sasaki join and admissible Kähler constructions. J. Geom. Phys. (2014)

  18. Boyer, C.P., Tønnesen-Friedman, C.W.: The Sasaki Join, Hamiltonian 2-Forms, and Constant Scalar Curvature, preprint; arXiv:1402.2546 [Math.DG] (2014)

  19. Boyer, C.P., Tønnesen-Friedman, C.W.: Simply Connected Manifolds with Infinitely Many Toric Contact Structures and Constant Scalar Curvature Sasaki Metrics, preprint; arXiv:1404.3999 (2014)

  20. Boothby, W.M., Wang, H.C.: On contact manifolds. Ann. Math. 68(2), 721–734 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  21. Castañeda, C.: Sasakian Geometry of Lens Space Bundles Over Riemann Surfaces. University of New Mexico Thesis (2014)

  22. Cho, K., Futaki, A., Ono, H.: Uniqueness and examples of compact toric Sasaki–Einstein metrics. Comm. Math. Phys. 277(2), 439–458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Choi, S., Masuda, M., Suh, D.Y.: Topological classification of generalized Bott towers. Trans. Am. Math. Soc. 362(2), 1097–1112 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Choi, S., Park, S., Suh, D.Y.: Topological classification of quasitoric manifolds with second Betti number 2. Pac. J. Math. 256(1), 19–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Collins, T., Székelyhidi, G.: K-Semistability for Irregular Sasakian Manifolds, preprint; arXiv:1204.2230 (2012)

  26. Futaki, A., Ono, H., Wang, G.: Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds. J. Differ. Geom. 83(3), 585–635 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Ghigi, A., Kollár, J.: Kähler–Einstein metrics on orbifolds and Einstein metrics on spheres. Comment. Math. Helv. 82(4), 877–902 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gauntlett, J.P., Martelli, D., Sparks, J., Waldram, D.: A new infinite class of Sasaki–Einstein manifolds. Adv. Theor. Math. Phys. 8(6), 987–1000 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gauntlett, J.P., Martelli, D., Sparks, J., Waldram, D.: Sasaki–Einstein metrics on \(S^2\times S^3\). Adv. Theor. Math. Phys. 8(4), 711–734 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guan, D.: Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends. Trans. Am. Math. Soc. 347(6), 2255–2262 (1995)

    MATH  Google Scholar 

  31. Haefliger, A.: Groupoïdes d’holonomie et Classifiants, Astérisque (116), 70–97 (1984), Transversal structure of foliations (Toulouse, 1982)

  32. He, W., Sun, S.: The Generalized Frankel Conjecture in Sasaki Geometry, preprint; arXiv:1209.4026 (2012)

  33. Hausmann, J.-C., Tolman, S.: Maximal Hamiltonian tori for polygon spaces. Ann. Inst. Fourier (Grenoble) 53(6), 1925–1939 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hwang, A.D.: On existence of Kähler metrics with constant scalar curvature. Osaka J. Math. 31(3), 561–595 (1994)

    MathSciNet  MATH  Google Scholar 

  35. Legendre, E.: Existence and non-uniqueness of constant scalar curvature toric Sasaki metrics. Compos. Math. 147(5), 1613–1634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Legendre, E., Tønnesen-Friedman, C.W.: Toric generalized Kähler–Ricci solitons with Hamiltonian 2-form. Math. Z. 274(3–4), 1177–1209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mabuchi, T., Nakagawa, Y.: New examples of Sasaki–Einstein manifolds. Tohoku Math. J. (2) 65(2), 243–252 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. McDuff, D., Salamon, D.: Introduction to Symplectic Topology, 2nd edn, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998)

    Google Scholar 

  39. Ross, J., Thomas, R.: Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics. J. Differ. Geom. 88(1), 109–159 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Wang, M.Y., Ziller, W.: Einstein metrics on principal torus bundles. J. Differ. Geom. 31(1), 215–248 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles P. Boyer.

Additional information

Both authors were partially supported by grants from the Simons Foundation, CPB by (#245002) and CWT-F by (#208799).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyer, C.P., Tønnesen-Friedman, C.W. The Sasaki Join, Hamiltonian 2-Forms, and Constant Scalar Curvature. J Geom Anal 26, 1023–1060 (2016). https://doi.org/10.1007/s12220-015-9583-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9583-9

Keywords

Mathematics Subject Classification

Navigation