Skip to main content

Advertisement

Log in

Sharp Moser–Trudinger Inequalities on Hyperbolic Spaces with Exact Growth Condition

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(\Phi _{n}(x)=e^x-\sum _{j=0}^{n-2}\frac{x^j}{j!}\) and \(\alpha _{n} =n\omega _{n-1}^{\frac{1}{n-1}}\) be the sharp constant in Moser’s inequality (where \(\omega _{n-1}\) is the area of the surface of the unit \(n\)-ball in \(\mathbb {R}^n\)), and \(dV\) be the volume element on the \(n\)-dimensional hyperbolic space \((\mathbb {H}^n, g)\) (\(n\ge {2}\)). In this paper, we establish the following sharp Moser–Trudinger type inequalities with the exact growth condition on \(\mathbb {H}^n\):

For any \(u\in {W^{1,n}(\mathbb {H}^n)}\) satisfying \(\Vert \nabla _{g}u\Vert _{n}\le {1}\), there exists a constant \(C(n)>0\) such that

$$\begin{aligned} \int _{\mathbb {H}^n}\frac{\Phi _{n}(\alpha _{n}|u|^{\frac{n}{n-1}})}{(1+|u|)^{\frac{n}{n-1}}}dV \le {C(n)\Vert u\Vert _{L^n}^{n}}. \end{aligned}$$

The power \(\frac{n}{n-1}\) and the constant \(\alpha _{n}\) are optimal in the following senses:

  1. (i)

    If the power \(\frac{n}{n-1}\) in the denominator is replaced by any \(p<\frac{n}{n-1}\), then there exists a sequence of functions \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but

    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha _{n}(|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV \rightarrow {\infty }. \end{aligned}$$
  2. (ii)

    If \(\alpha >\alpha _{n}\), then there exists a sequence of function \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but

    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha (|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV\rightarrow {\infty }, \end{aligned}$$

    for any \(p\ge {0}\).

This result sharpens the earlier work of the authors Lu and Tang (Adv Nonlinear Stud 13(4):1035–1052, 2013) on best constants for the Moser–Trudinger inequalities on hyperbolic spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: Trudinger type inequalities in \(R^{N}\) and their best exponents. Proc. Am. Math. Soc. 128, 2051–2057 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. (2) 128(2), 385–398 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adimurthi, Sandeep, K.: A singular Moser–Trudinger embedding and its applications. NoDEA Nonlinear Differ. Equ. Appl. 13(5–6), 585–603 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baernstein, A.: II.A unified approach to symmetrization. In: Partial Differential Equations of Elliptic Type (Cortona, 1992), Sympos. Math., XXXV, pp. 47–91. Cambridge Univ. Press, Cambridge (1994)

  5. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. (2) 138(1), 213–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, S.Y.A., Yang, P.: The inequality of Moser and Trudinger and applications to conformal geometry. Dedicated to the memory of Jürgen K. Moser. Comm. Pure Appl. Math. 56(8), 1135–1150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohn, W.S., Lu, G.: Best constants for Moser–Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J. 50(4), 1567–1591 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohn, W.S., Lu, G.: Sharp constants for Moser–Trudinger inequalities on spheres in complex space \(C^n\). Comm. Pure Appl. Math. 57(11), 1458–1493 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fontana, L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv. 68, 415–454 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Trudinger–Moser inequality on the whole plane with with the exact growth condition. Nonlinearity 25(6), 1843–1849 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lam, N., Lu, G.: Sharp Moser–Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231(6), 3259–3287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lam, N., Lu, G.: Sharp Adams type inequalities in Sobolev spaces \(W^{m,\frac{m}{n}}(\mathbb{R}^n)\)for arbitrary integer \(m\). J. Differ. Equ. 253, 1143–1171 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lam, N., Lu, G.: The Moser–Trudinger and Adams inequalities and elliptic and subelliptic equations with nonlinearity of exponential growth. Recent developments in geometry and analysis, pp. 179–251. Adv. Lect. Math. (ALM), 23, Int. Press, Somerville, MA (2012)

  14. Lam, N., Lu, G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255(3), 298–325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lam, N., Lu, G., Tang, H.: On nonuniformly subelliptic equations of \(Q\)-sub-Laplacian type with critical growth in \(H^{n}\). Adv. Nonlinear Stud. 12, 659–681 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lam, N., Lu, G., Tang, H.: Sharp subcritical Moser–Trudinger inequalities on Heisenberg groups and subelliptic PDEs. Nonlinear Anal. 95, 77–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Y.X.: Extremal functions for the Moser–Trudinger inequalities on compact Riemannian manifolds. Sci. China Ser. A 48(5), 618–648 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Y.X., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \( \mathbb{R}^{n}\). Indiana Univ. Math. J. 57(1), 451–480 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu, G., Tang, H.: Best constants for Moser–Trudinger inequalities on high dimensional hyperbolic spaces. Adv. Nonlinear Stud. 13(4), 1035–1052 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Lu, G., Tang, H., Zhu, M.: Best constants for Adams’ inequalities with the exact growth condition in \(\mathbb{R}^n\) (to appear)

  21. Mancini, G., Sandeep, K.: Moser–Trudinger inequalities on conformal discs. Commun. Contemp. Math. 12(6), 1055–1068 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Masmoudi, N., Sani, F.: Trudinger–Moser inequalities with the exact growth condition in \(\mathbb{R}^n\). Comm. Pure Appl. Math. 67(8), 1307–1335 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20(1970/71), 1077–1092

  24. Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb{R}^{2}\). J. Funct. Anal 219(2), 340–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pohožaev, S.I.: On the eigenfunctions of the equation \(\Delta u+\lambda f(u)=0\), (Russian) Dokl. Akad. Nauk SSSR 165, 36–39 (1965)

    MathSciNet  Google Scholar 

  26. Ruf, B., Sani, F.: Sharp Adams-type inequalities in \(R^n\). Trans. Am. Math. Soc. 365(2), 645–670 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shaw, M.C.: Eigenfunctions of the nonlinear equation \(\bigtriangleup u+vf(x, u)=0\) in \(R^2\). Pacific J. Math. 129(2), 349–356 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  29. Wolf, J.: Spaces of Constant Curvature. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  30. Yudovič, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations, (Russian) Dokl. Akad. Nauk SSSR 138, 805–808 (1961)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author’s research is supported partly by a US NSF Grant DMS #1301595 and the second author’s research is partly supported by a NNSF Grant of China (No. 11371056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanli Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G., Tang, H. Sharp Moser–Trudinger Inequalities on Hyperbolic Spaces with Exact Growth Condition. J Geom Anal 26, 837–857 (2016). https://doi.org/10.1007/s12220-015-9573-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9573-y

Keywords

Mathematics Subject Classification

Navigation