Skip to main content
Log in

Convex Regions of Stationary Spacetimes and Randers Spaces. Applications to Lensing and Asymptotic Flatness

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

By using stationary-to-Randers correspondence (SRC, see Caponio et al. in Rev Mat Iberoamericana 27:919–952, 2011), a characterization of light and time-convexity of the boundary of a region of a standard stationary \((n+1)\)-spacetime is obtained, in terms of the convexity of the boundary of a domain in a Finsler \(n\) or \((n+1)\)-space of Randers type. The latter convexity is analyzed in depth and, as a consequence, the causal simplicity and the existence of causal geodesics confined in the region and connecting a point to a stationary line are characterized. Applications to asymptotically flat spacetimes include the light-convexity of hypersurfaces \(S^{n-1}(r)\times \mathbb {R} \), where \(S^{n-1}(r)\) is a sphere of large radius in a spacelike section of an end, as well as the characterization of their time-convexity with natural physical interpretations. The lens effect of both light rays and freely falling massive particles with a finite lifetime, (i.e., the multiplicity of such connecting curves) is characterized in terms of the focalization of the geodesics in the underlying Randers manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recall that these techniques were initiated in [11] with the introduction of time and light convexity in the static case. This case becomes quite simpler, as it is related to Riemannian instead of properly Finslerian metrics, see [6]. The techniques also apply to periodic trajectories and other Lorentzian variational problems on convex domains (see the subtleties in [7] and references therein).

  2. It is worth pointing out that a second natural notion of forward and backward Cauchy sequence can be given, see [28, Section 3.2.2]. This notion is not equivalent to that stated above, but it yields equivalent (forward and backward) Cauchy completions and, thus, equivalent notions of completeness.

  3. Usually, one has to assume that the hypersurface is also non-degenerate but, since our definition (recall Remark 2.1) does not involve the second fundamental form of \(H\), the non-degeneracy assumption can be dropped (cf. [17, Remark 3]). Clearly, in the non-degenerate case, one recovers the usual condition about the sign of the second fundamental form.

  4. Notice that, for lightlike geodesics, the construction of the Fermat metric was conformally invariant and, so, the elements \(h, \omega \) where normalized so that \(\beta \) could be regarded as an overall conformal factor, eventually equal to 1. However, this conformal invariance does not hold for timelike geodesics, and it is emphasized by means of the subscript \(\beta \).

  5. Recall that, for example, in order to have a well defined, unique and non-necessarily vanishing ADM mass of a \(3\) dimensional Riemannian manifold \((S,h)\), the decay rate of \(h\)—which involves also the Ricci tensor—must be of order not less than \(1/2\) and not greater than \(1\), [2, Theorems 4.2 and 4.3]).

  6. Even though this excludes the presence of electromagnetic fields, it is justified as it allows one to make simpler statements, leaving to the reader the task to determine precise fall-off hypotheses for the energy-momentum tensor (compare, e.g., with [33, Section 2.3]) whenever the vacuum assumption is dropped.

  7. See, about the difficulty of this problem, the claim on its over-determinacy in [48], as well as the construction of a solution involving Kerr–Newman spacetime [47] (recall that the latter is not vacuum around \(\mathcal {J}^\pm \)).

  8. The result follows even if we allow here and in (46) \(q'=0\).

  9. Following the detailed discussion and nomenclature about Kerr in [56, p. 209], such geodesics are either (ordinary) bounded orbits or (exceptional) crash-crash ones. Recall that the ordinary orbits of Kerr geodesics are bounded (those with two \(r\)-turning points, one of them a maximum), flyby (one \(r\)-turning point, necessarily a minimum) or transit (no \(r\)-turning points). The exceptional orbits are spherical ones (i.e., \(r(s)\equiv r_{0}\)), asymptotic orbits to a spherical one, crash-escape orbits and crash-crash ones. None of these have a \(r\)-turning point \(r_{0}\) except the crash-crash one (as in the example of the pebble), where \(r_{0}\) is a maximum.

  10. Recall that [3, Theorem 1.3] is stated under \(C^{2,1}_\mathrm{loc}\) regularity, but the result holds also for a \(C^2\) domain (see [17]).

  11. One could try to improve this hypothesis by replacing it with some condition intrinsic to \(D\) (i.e., independent of if it is regarded as a domain of a bigger manifold) or relaxing the hypotheses of smoothness on \(\partial D\). Nevertheless, such conditions are rather technical even in the Riemannian case [5] (and, thus, even in the simple static case). Moreover, the non-trivial relation between the symmetrized distance \(d_{s}\) and the generalized distance \(d\) in a Finsler manifold, complicates more the situation—recall, for example, that \(d_{s}\) may not be a length metric, which must be taken into account in the picture of the intrinsic Cauchy boundary, see [28, Remark 3.23].

  12. We use standard terminology as in [23].

  13. However, one could still find a result of multiplicity in purely causal terms by using timelike homotopy classes as in [62], which allows some sharp conclusions on the behavior of the geodesics.

References

  1. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Graduate Texts in Mathematics. Springer, New York (2000)

    Google Scholar 

  2. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartolo, R., Caponio, E., Germinario, A., Sánchez, M.: Convex domains of Finsler and Riemannian manifolds. Calc. Var. Partial Dif. 40, 335–356 (2011)

  4. Bartolo, R., Germinario, A.: Convexity conditions on the boundary of a stationary spacetime and applications. Commun. Contemp. Math. 11, 739–769 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartolo, R., Germinario, A., Sánchez, M.: Convexity of domains of Riemannian manifolds. Ann. Global Anal. Geom. 21, 63–83 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartolo, R., Germinario, A., Sánchez, M.: A note on the boundary of a static Lorentzian manifold. Differ. Geom. Appl. 16, 121–131 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartolo, R., Sánchez, M.: Remarks on some variational problems on non-complete manifolds. Nonlinear Anal. 47, 2887–2892 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, Pure App. Math, 2nd edn. Marcel Dekker, New York (1996)

    MATH  Google Scholar 

  9. Beig, R., Chruściel, P.T.: Killing vectors in asymptotically flat space-times. I. Asymptotically translational Killing vectors and the rigid positive energy theorem. J. Math. Phys. 37, 1939–1961 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beig, R., Schmidt, B.: Time-independent gravitational fields. In: “Einstein’s Field Equations and their Physical Implications”. Lecture Notes in Physics. Springer, Berlin (2000)

  11. Benci, V., Fortunato, D., Giannoni, F.: Geodesics on static Lorentzian manifolds with convex boundary. In: “Proceedings of Variational Methods in Hamiltonian Systems and Elliptic Equations”. Pitman Research Notes in Mathematics Series, vol. 243, pp. 21–41. Longman (1990)

  12. Bernal, A.N., Sánchez, M.: Globally hyperbolic spacetimes can be defined as “causal” instead of “strongly causal”. Class. Quant. Grav. 24, 745–750 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bishop, R.L.: Infinitesimal convexity implies local convexity. Indiana Univ. Math. J. 24, 169–172 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bray, H.L., Chruściel, P.T.: The Penrose inequality. In: Friedrich, H., Chruściel, P.T. (eds.) The Einstein Equations and the Large Scale Behavior of Gravitational Fields (50 Years of the Cauchy Problem in General Relativity). Birkhäuser, Boston (2004). Available at arXiv:gr-qc/0312047v2

  15. Bray, H.L., Lee, D.A.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148, 81–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Candela, A.M., Flores, J.L., Sánchez, M.: Global hyperbolicity and Palais-Smale condition for action functionals in stationary spacetimes. Adv. Math. 218, 515–536 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caponio, E.: Infinitesimal and local convexity of a hypersurface in a semi-Riemannian manifold. In: Sánchez, M., et al. (eds.) “Recent Trends in Lorentzian Geometry”. Springer Proceedings in Mathematics and Statistics, vol. 26. Springer Science + Business Media, New York (2013)

  18. Caponio, E., Javaloyes, M.A., Masiello, A.: On the energy functional on Finsler manifolds and applications to stationary spacetimes. Math. Ann. 351, 365–392 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caponio, E., Javaloyes, M.A., Masiello, A.: Finsler geodesics in the presence of a convex function and their applications. J. Phys. A 43, 135207 (2010). (15pp)

    Article  MathSciNet  MATH  Google Scholar 

  20. Caponio, E., Javaloyes, M.A., Sánchez, M.: On the interplay between Lorentzian causality and Finsler metrics of Randers type. Rev. Mat. Iberoam. 27, 919–952 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Caponio, E., Minguzzi, E.: Solutions to the Lorentz force equation with fixed charge-to-mass ratio in globally hyperbolic space-times. J. Geom. Phys. 49, 176–186 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Choquet-Bruhat, Y.: Relativity and the Einstein Equations. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  23. Chruściel, P.T., Costa, J.L., Heusler, M.: Stationary black holes: uniqueness and beyond, Living Rev. Relativ. 15, (2012). Available at http://www.livingreviews.org/lrr-2012-7

  24. Dain, S.: Initial data for stationary spacetimes near spacelike infinity. Class. Quantum Gravity 18, 4329–4338 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fadell, E., Husseini, S.: Category of loop spaces of open subsets in Euclidean Space. Nonlinear Anal. 17, 1153–1161 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Flores, J.L., Herrera, J.: The c-boundary construction of spacetimes: application to stationary Kerr spacetime. In: Sánchez, M., et al. (eds.) Recent Trends in Lorentzian Geometry. Springer Proceedings in Mathematics and Statistics. Springer Science + Business Media, New York (2012)

  27. Flores, J.L., Herrera, J., Sánchez, M.: On the final definition of the causal boundary and its relation with the conformal boundary. Adv. Theor. Math. Phys. 15, 991–1058 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Flores, J.L., Herrera, J., Sánchez, M.: Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds. Mem. Am. Math. Soc. 226, 1064 (2013). Available at arXiv:1011.1154 [math.DG]

  29. Flores, J.L., Sánchez, M.: Geodesics in stationary spacetimes. Application to Kerr spacetime. Int. J. Theor. Phys. Group Theory Nonlinear Opt. 8, 319–336 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Flores, J.L., Sánchez, M.: A topological method for geodesic connectedness of space-times: outer Kerr space-time. J. Math. Phys. 43, 4861–4885 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Flores, J.L., Sánchez, M.: Geodesic connectedness of multiwarped spacetimes. J. Differ. Equations 186, 1–30 (2002)

  32. Fortunato, D., Giannoni, F., Masiello, A.: Fermat principle for stationary space-times with applications to light rays. J. Geom. Phys. 15, 159–188 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Frauendiener, J.: Conformal infinity. Living Rev. Relativity 7, (2004). Available at http://www.livingreviews.org/lrr-2004-1

  34. Geroch, R.: Structure of the gravitational field at spatial infinity. J. Math. Phys. 13, 956–968 (1972)

    Article  MathSciNet  Google Scholar 

  35. Giannoni, F., Masiello, A.: On the existence of geodesics on stationary Lorentz manifolds with convex boundary. J. Funct. Anal. 101, 340–369 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gibbons, G.W., Herdeiro, C.A.R., Warnick, C.M., Werner, M.C.: Stationary metrics and optical Zermelo–Randers–Finsler geometry. Phys. Rev. D 79, 044022,21 (2009). Available at arXiv:0811.2877 [gr-qc]

  37. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order (Reprint of the 1998 Edition). Springer, Berlin (2001)

    MATH  Google Scholar 

  38. Hasse, W., Perlick, V.: A Morse-theoretical analysis of gravitational lensing by a Kerr–Newman black hole. J. Math. Phys. 47, 042503 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hawking, S.W., Ellis, G.F.: The Large Scale Structure of SpaceTime. Cambridge University Press, London (1973)

    Book  MATH  Google Scholar 

  40. Herbig, A.-K., McNeal, J.D.: Convex defining functions for onvex domains. J. Geom. Anal. 22, 433–454 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Javaloyes, M.A., Sánchez, M.: A note on the existence of standard splittings for conformally stationary spacetimes. Class. Quantum Gravity 25, 168001,7 (2008)

    Article  MathSciNet  Google Scholar 

  42. Kovner, I.: Fermat principles for arbitrary space-times. Astrophys. J. 351, 114–120 (1990)

    Article  Google Scholar 

  43. Lichnerowicz, A.: Théories Relativistes de la Gravitation et de l’Électromagnétisme. Relativité Générale et Théories Unitaires. Masson et Cie, Paris (1955)

    MATH  Google Scholar 

  44. Lichnerowicz, A., Thiry, Y.: Problèmes de calcul des variations liés à la dynamique classique et à la théorie unitaire du champ. C. R. Acad. Sci. Paris 224, 529–531 (1947)

    MathSciNet  MATH  Google Scholar 

  45. MacCallum, M.A.H., Mars, M., Vera, R.: Second order perturbations of rotating bodies in equilibrium; the exterior vacuum problem. In: Alonso-Alberca, N., Álvarez, E., Ortín, T., Vázquez-Mozo, M.A. (eds.) Beyond General Relativity. Proceedings of the 2004 Spanish Relativity Meeting (ERE2004)”, pp. 167–172. Servicio de Publicaciones de la Universidad Autónoma de Madrid, Madrid (2007). Available at arXiv:gr-qc/0502063

  46. MacCallum, M.A.H., Mars, M., Vera, R.: Stationary axisymmetric exteriors for perturbations of isolated bodies in general relativity, to second order. Phys. Rev. D 75, 024017 (2007)

    Article  MathSciNet  Google Scholar 

  47. Mars, M.: The Wahlquist–Newman solution. Phys. Rev. D 63, 064022 (1998)

    Article  MathSciNet  Google Scholar 

  48. Mars, M., Senovilla, J.M.M.: On the construction of global models describing rotating bodies; uniqueness of the exterior gravitational field. Mod. Phys. Lett 13, 1509–1519 (1998). Available at arxiv:gr-qc/9806094

  49. Masiello, A.: Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, New York (1994)

    MATH  Google Scholar 

  50. Masiello, A., Piccione, P.: Shortening null geodesics in Lorentzian manifolds. Applications to closed light rays. Differ. Geom. Appl. 8, 47–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Minguzzi, E.: On the causal properties of warped product spacetimes. Class. Quantum Gravity 24, 4457–4474 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: “Recent Developments in Pseudo-Riemannian Geometry”, pp. 359–418. ESI Lectures in Mathematics and Physics.European Mathematical Society Publishing House. ESI Lectures in Mathematics and Physics.European Mathematical Society Publishing House, Zurich (2008)

  53. Minguzzi, E. and Sánchez, M.: Connecting solutions of the Lorentz force equation do exist. Commun. Math. Phys. 264, 349–370 (2006). Erratum ibid. 267, 559–561 (2006)

  54. Müller zum Hagen, H.: On the analyticity of stationary vacuum solutions of Einstein’s equation. Proc. Cambridge Philos. Soc. 68, 199–201 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  55. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  56. O’Neill, B.: The Geometry of Kerr Black Holes. A K Peters Ltd., Wellesley (1995)

    MATH  Google Scholar 

  57. Penrose, R.: Asymptotic properties of fields and space-times. Phys. Rev. Lett. 10, 66–68 (1963)

    Article  MathSciNet  Google Scholar 

  58. Perlick, V.: On Fermat’s principle in general relativity. I. The general case. Class. Quantum Gravity 7, 1319–1331 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  59. Perlick, V.: Gravitational Lensing from a Spacetime Perspective. Living Rev. Relativ. 7, (2004). Available at http://www.livingreviews.org/lrr-2004-9

  60. Roberts, M.D.: Spacetime exterior to a star: against asymptotic flatness, (2002). Available at arXiv:gr-qc/9811093v5

  61. Sánchez, M.: Geodesic connectedness of semi-Riemannian manifolds. Nonlinear Analysis. 47, 3085–3102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. Sánchez, M.: Timelike periodic trajectories in spatially compact Lorentz manifolds. Proc. Am. Math. Soc. 127, 3057–3066 (1999)

  63. Schoen, R. M.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In:“Topics in Calculus of Variations (Montecatini Terme, 1987)”. Lecture Notes in Mathematics, vol. 1365, pp. 120–154. Springer, Berlin (1989)

  64. Shen, Z.: Lectures on Finsler Geometry. World Scientific Publishing Co., Singapore (2001)

    Book  MATH  Google Scholar 

  65. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  66. Townsend, P.K.: Black Holes, (1997). Available at arXiv:gr-qc/9707012

  67. Wald, Robert M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank R. Bartolo for several discussions on a preliminary version of this work. We also thank the referee for her/his interesting comments and questions. EC and AVG are partially supported by PRIN2009 “Metodi variazionali ed applicazioni allo studio di equazioni differenziali nonlineari”. MS is partially supported by Spanish MTM2010-18099 (MICINN) and P09-FQM-4496 (Junta de Andalucía) grants, both with FEDER funds. This research is a result of the activity developed within the Spanish-Italian Acción Integrada HI2008.0106/Azione Integrata Italia-Spagna IT09L719F1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erasmo Caponio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caponio, E., Germinario, A.V. & Sánchez, M. Convex Regions of Stationary Spacetimes and Randers Spaces. Applications to Lensing and Asymptotic Flatness. J Geom Anal 26, 791–836 (2016). https://doi.org/10.1007/s12220-015-9572-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9572-z

Keywords

Mathematics Subject Classification

Navigation