Skip to main content
Log in

Weyl Curvature, Del Pezzo Surfaces, and Almost-Kähler Geometry

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

If a smooth compact \(4\)-manifold \(M\) admits a Kähler–Einstein metric \(g\) of positive scalar curvature, Gursky (Ann Math 148:315–337, 1998) showed that its conformal class \([g]\) is an absolute minimizer of the Weyl functional among all conformal classes with positive Yamabe constant. Here we prove that, with the same hypotheses, \([g]\) also minimizes of the Weyl functional on a different open set of conformal classes, most of which have negative Yamabe constant. An analogous minimization result is then proved for Einstein metrics \(g\) which are Hermitian, but not Kähler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, M.: Kähler metrics on toric orbifolds. J. Differ. Geom. 58, 151–187 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Apostolov, V., Drăghici, T.: The curvature and the integrability of almost-Kähler manifolds: a survey. In: Symplectic and contact topology: interactions and perspectives (Toronto, ON, Montreal, QC, 2001), Fields Institute Communications, vol. 35, pp. 25–53. American Mathematical Society, Providence (2003)

  3. Atiyah, M.F., et al.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London Ser. A 362, 425–461 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bando, S., Mabuchi, T.: Uniqueness of Einstein Kähler metrics modulo connected group actions. In: Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math. vol. 10, pp. 11–40. North-Holland, Amsterdam, (1987)

  5. Barth, W., et al.: Compact complex surfaces. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 4(3). Springer-Verlag, Berlin (1984)

  6. Biquard, O.: Métriques kählériennes extrémales sur les surfaces toriques (d’après S. Donaldson), Astérisque, Exp. No. 1018, viii, pp. 181–201. Séminaire Bourbaki. vol. 2009/2010, Exposés 1012–1026, (2011)

  7. Blair, D.E.: The “total scalar curvature” as a symplectic invariant and related results. In: Proceedings of the 3rd Congress of Geometry (Thessaloniki, 1991), pp. 79–83. Aristotle University of Thessaloniki, Thessaloniki (1992)

  8. Calabi, E.: Extremal Kähler metrics. In: Seminar on Differential Geometry, Annals of Mathematics Studies, vol. 102, pp. 259–290. Princeton University Press, Princeton (1982)

  9. Calabi, E.: Extremal Kähler metrics II. In: Differential Geometry and Complex Analysis, pp. 95–114. Springer, Berlin, (1985)

  10. Chen, X., et al.: On conformally Kähler, Einstein manifolds. J. Amer. Math. Soc. 21, 1137–1168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, X.X.: Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance. Invent. Math. 175, 453–503 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, X.X., Tian, G.: Geometry of Kähler metrics and foliations by holomorphic discs, pp. 1–107. Publications Mathématiques de l’Institut des Hautes Études Scientifiques, Paris (2008)

  13. Demazure, M.: Surfaces de del Pezzo, II, III, IV, V. In: Séminaire sur les Singularités des Surfaces. Lecture Notes in Mathematics, vol. 777, pp. 21–69. Springer, Berlin (1980)

  14. Derdziński, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compositio Math. 49, 405–433 (1983)

    MATH  MathSciNet  Google Scholar 

  15. Donaldson, S.K.: Remarks on gauge theory, complex geometry and 4-manifold topology. In: Fields Medallists’ lectures, World Sci. Ser. 20th Century Math, vol. 5, pp. 384–403. World Scientific Publishing, River Edge (1997)

  16. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–349 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Fujiki, A.: Moduli space of polarized algebraic manifolds and Kähler metrics [translation of Sûgaku 42 (1990), no. 3, 231–243; MR1073369 (92b:32032)], Sugaku Expositions, vol. 5, pp. 173–191 (1992)

  18. Fulton, W.: Introduction to toric varieties. In: Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)

  19. Futaki, A., Mabuchi, T.: Bilinear forms and extremal Kähler vector fields associated with Kähler classes. Math. Ann. 301, 199–210 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Futaki, A., Mabuchi, T.: Moment maps and symmetric multilinear forms associated with symplectic classes. Asian J. Math. 6, 349–371 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Gay, D.T., Kirby, R.: Constructing symplectic forms on 4-manifolds which vanish on circles. Geom. Topol. 8, 743–777 (2004). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  22. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  23. Guillemin, V.: Moment maps and combinatorial invariants of Hamiltonian \(T^n\)-spaces, Progress in Mathematics, vol. 122. Birkhäuser Boston Inc., Boston (1994)

  24. Gursky, M.J.: The Weyl functional, de Rham cohomology, and Kähler–Einstein metrics. Ann. Math. (2) 148, 315–337 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Honda, K.: Transversality theorems for harmonic forms. Rocky Mountain J. Math. 34, 629–664 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kim, I.: Almost-Kähler Anti-Self-Dual Metrics. PhD thesis, State University of New York at Stony Brook (2014)

  27. Kim, J.: A closed symplectic four-manifold has almost Kähler metrics of negative scalar curvature. Ann. Global Anal. Geom. 33, 115–136 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kim, J.: Almost Kähler metrics of negative scalar curvature on symplectic manifolds. Math. Z 262, 381–388 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kobayashi, O.: On a conformally invariant functional of the space of Riemannian metrics. J. Math. Soc. Japan 37, 373–389 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lalonde, F., McDuff, D.: \(J\)-curves and the classification of rational and ruled symplectic \(4\)-manifolds. In: Contact and Symplectic Geometry (Cambridge, 1994), vol. 8, pp. 3–42. Publications of the Newton Institute, Cambridge University Press, Cambridge (1996)

  31. LeBrun, C.: Einstein metrics on complex surfaces. In: Geometry and Physics (Aarhus, 1995), Lecture Notes in Pure and Appl. Math., vol. 184, pp. 167–176. Dekker, New York (1997)

  32. LeBrun, C.: Yamabe constants and the perturbed Seiberg–Witten equations. Comm. Anal. Geom. 5, 535–553 (1997)

    MATH  MathSciNet  Google Scholar 

  33. LeBrun, C.: Einstein metrics, symplectic minimality, and pseudo-holomorphic curves. Ann. Global Anal. Geom. 28, 157–177 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. LeBrun, C.: On Einstein, Hermitian 4-manifolds. J. Differ. Geom. 90, 277–302 (2012)

    MATH  MathSciNet  Google Scholar 

  35. LeBrun, C.: Calabi energies of extremal toric surfaces. In: Surveys in Differential Geometry, Geometry and Topology, vol. 18, pp. 195–226. International Press, Boston (2013)

  36. LeBrun, C.: Einstein manifolds and extremal Kähler metrics. J. Reine Angew. Math. 678, 69–94 (2013)

    MATH  MathSciNet  Google Scholar 

  37. Lejmi, M.: Extremal almost-Kähler metrics. Int. J. Math. 21, 1639–1662 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lichnerowicz, A.: Transformation infinitésimales conformes de certaines variétés riemanniennes compactes. C. R. Acad. Sci. Paris 241, 726–729 (1955)

    MATH  MathSciNet  Google Scholar 

  39. Liu, A.-K.: Some new applications of general wall crossing formula, Gompf’s conjecture and its applications. Math. Res. Lett. 3, 569–585 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  40. Manin, Y. I.: Cubic Forms: Algebra, Geometry, Arithmetic, Translated from the Russian by Hazewinkel, M. North-Holland Publishing Co., Amsterdam (1974)

  41. Morgan, J.: The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Mathematical Notes vol. 44. Princeton University Press, Princeton (1996)

  42. Odaka, Y., et al.: Compact moduli spaces of Del Pezzo surfaces and Kähler–Einstein metrics. e-print arXiv:1210.0858 [math.DG] (2012)

  43. Page, D.: A compact rotating gravitational instanton. Phys. Lett. 79B, 235–238 (1979)

    MathSciNet  Google Scholar 

  44. Perutz, T.: Zero-sets of near-symplectic forms. J. Symplectic Geom. 4, 237–257 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Poon, Y.S.: Compact self-dual manifolds with positive scalar curvature. J. Differ. Geom. 24, 97–132 (1986)

    MATH  MathSciNet  Google Scholar 

  46. Siu, Y.T.: The existence of Kähler–Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group. Ann. of Math. (2) 127, 585–627 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  47. Taubes, C.H.: The Seiberg–Witten invariants and symplectic forms. Math. Res. Lett. 1, 809–822 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  48. Taubes, C.H.: More constraints on symplectic forms from Seiberg–Witten invariants. Math. Res. Lett. 2, 9–14 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  49. Taubes, C.H.: The Seiberg–Witten and Gromov invariants. Math. Res. Lett. 2, 221–238 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  50. Taubes, C.H.: A proof of a theorem of Luttinger and Simpson about the number of vanishing circles of a near-symplectic form on a 4-dimensional manifold. Math. Res. Lett. 13, 557–570 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  51. Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  52. Yano, K.: Differential geometry on complex and almost complex spaces, International Series of Monographs in Pure and Applied Mathematics, vol. 49. A Pergamon Press Book, The Macmillan Co., New York (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude LeBrun.

Additional information

Communicated by Steven G. Krantz.

Research supported in part by NSF grant DMS-1205953.

Appendix The Yamabe Invariant

Appendix The Yamabe Invariant

In this appendix, we contrast Gursky’s theorem [24] with Theorem B by showing that “most” symplectic conformal classes on any \(4\)-manifold have negative Yamabe constant. For related results, see [27, 28].

Proposition 4

Let \((M^4 ,\omega )\) be any compact symplectic \(4\)-manifold. Then there are sequences of conformal classes \([g_k]\) on \(M\) which are compatible with \(\omega \), and have Yamabe constants \(Y([g_k]) \rightarrow -\infty \). Moreover, among all \(\omega \)-compatible conformal classes, those with negative Yamabe constant are dense in the \(C^0\) topology.

Proof

The Yamabe constant of a conformal class \([g]\) on a compact \(4\)-manifold \(M\) is given by

$$\begin{aligned} Y([g]) = \inf _{g^\prime \in [g]} \frac{\int _M s_{g^\prime }d\mu _{g^\prime }}{\sqrt{\int _M \,d\mu _{g^\prime }}} , \end{aligned}$$

so it suffices to produce a sequence of almost-Kähler metrics \(g_k\) adapted to \(\omega \) such that \(\int s_{g_k}\,d\mu _{g_k}\rightarrow -\infty \); here we are using the fact that all such metrics have the same volume form \(d\mu =\omega ^2/2\), and hence the same total volume. On the other hand, for any almost-Kähler metric \(g\),

$$\begin{aligned} 4\pi c_1\cdot [\omega ] = \int \limits _M \frac{s+s^*}{2}d\mu = \int \limits _M \left( s+ \frac{|\nabla \omega |^2}{2}\right) d\mu , \end{aligned}$$

so it suffices to show that we can choose \(g_k\) adapted to \(\omega \) so that

$$\begin{aligned} \Vert \nabla \omega \Vert _{L^2}\rightarrow +\infty . \end{aligned}$$

Of course, a choice of almost-Kähler metric \(g\) compatible with \(\omega \) is equivalent to the choice of an almost-complex structure \(J\) such that \(\omega \) is \(J\)-invariant; the metric is then given by

$$\begin{aligned} g = \omega (\cdot , J \cdot ), \end{aligned}$$

and, with respect to this metric, \(J\) then just becomes \(\omega \) with an index raised. The Nijenhuis tensor \(N_J\), given by

$$\begin{aligned} N_J (X,Y)=( \nabla _X J)(Y)-(\nabla _Y J)(X)-( \nabla _{JX} J)(JY)+(\nabla _{JY} J)(JX), \end{aligned}$$

is then just four times the projection of \(\nabla J\) to \((\Lambda ^{0,2}_J\oplus \Lambda ^{2,0}_J)\otimes TM\), and represents the O’Neill tensor of \(T^{0,1}_J\) in that

$$\begin{aligned}{}[X+iJX,Y+iJY]^{1,0}=J N_J(X,Y)+iN_J(X,Y). \end{aligned}$$

It thus suffices to produce a sequence \(J_k\) of \(\omega \)-compatible almost-complex structures which satisfy

$$\begin{aligned} \Vert N_{J_k}\Vert _{L^2}\rightarrow \infty , \end{aligned}$$

where the norms are to be computed with respect to the associated sequence of metrics

$$\begin{aligned} g_k = \omega (\cdot , J_k \cdot ). \end{aligned}$$

This can be done via an entirely local construction. First, choose an arbitrary background almost-Kähler metric \(g\) adapted to \(\omega \), which amounts to choosing a background \(\omega \)-compatible almost-complex structure \(J\). Now take a Darboux chart \((x,y,u,v)\) centered on an arbitrary point \(p\in M\), so that

$$\begin{aligned} \omega = dx\wedge dy + du\wedge dv \end{aligned}$$
(14)

and such that \(J\) coincides with the standard Euclidean almost-complex structure at the origin, which represents \(p\) in these coordinates. Next, by freezing the almost-complex structure near the origin, introduce a perturbed back-ground almost-Kähler metric \(g_0=g_{0,\varepsilon }\) which agrees with the standard Euclidean metric on, say, the coordinate ball of radius \(3\varepsilon \) about the origin, but agrees with \(g\) outside the ball of radius \(4\varepsilon \); and notice that we can do this so that \(g_{0,\varepsilon }\rightarrow g\) in the \(C^0\) topology as \(\varepsilon \rightarrow 0\). Next, for any fixed \(\varepsilon \), notice that we can construct a new almost-Kähler metric \(g_f\) associated with an almost-complex structure given by

$$\begin{aligned} J_f= e^{2f} dx \otimes \frac{\partial }{\partial y}- e^{-2f} dy \otimes \frac{\partial }{\partial x} + du \otimes \frac{\partial }{\partial v}- dv \otimes \frac{\partial }{\partial u} \end{aligned}$$

on the \((3\varepsilon )\)-ball, where \(f\) is a smooth function supported in the ball of radius \(2\varepsilon \); we then extend \(J\) to all of \(M\) by taking it to coincide with the almost-complex structure \(J_0\) of \(g_0\) outside the \((2\varepsilon )\)-ball. The corresponding metric \(g_f\) is given by

$$\begin{aligned} g_f= e^{2f}dx^2 + e^{-2f}dy^2 + du^2 + dv^2 \end{aligned}$$
(15)

on the region in question, and

$$\begin{aligned} (e^fdx+ie^{-f}dy) \left( \left[ e^{-f} \frac{\partial }{\partial x} + i e^f \frac{\partial }{\partial y}, \frac{\partial }{\partial u} +i \frac{\partial }{\partial v}\right] \right) = 2\left( \frac{\partial }{\partial u} +i \frac{\partial }{\partial v}\right) f \end{aligned}$$

is a component of \(JN_J+iN_J\) in an orthonormal frame. Now let \(g_k=g_{k,\varepsilon }\) be the sequence of almost-Kähler metrics \(g_{f_k}\) associated with the sequence of functions \(f_k = \frac{1}{k} \sin (\frac{2\pi k^2}{\varepsilon } v) \cdot \phi \), where the cut-off function \(\phi : M\rightarrow [0,1]\) is supported in the \((2\varepsilon )\)-ball and \(\equiv 1\) on the \(\varepsilon \)-ball. The Nijenhuis tensors of the corresponding almost-complex structures then satisfy

$$\begin{aligned} \Vert N_{J_k}\Vert _{L^2}^2 > \int \limits _{[-\frac{\varepsilon }{2}, \frac{\varepsilon }{2}]^4} |\frac{\partial f}{\partial v}|^2\, \frac{\omega ^2}{2} = 2\pi ^2 k^2 \varepsilon ^2 \rightarrow + \infty \end{aligned}$$

with respect to the associated metrics.

In particular, for fixed \(\varepsilon \), the Yamabe constant of \([g_k] = [g_{k,\varepsilon }]\) is negative for all large \(k\). However, the above choice of \(f_k\) converges to \(0\) in \(C^0\), so that \(g_{k,\varepsilon }\rightarrow g_{0,\varepsilon }\) in the \(C^0\) topology as \(k\rightarrow \infty \). On the other hand, we also have \(g_{0,\varepsilon }\rightarrow g\) in the \(C^0\) topology as \(\varepsilon \rightarrow 0\). By choosing a suitably large \(k(j)\) for each \(\varepsilon = 2^{-j}\), we therefore obtain a sequence of \(\omega \)-compatible metrics converging to the given \(\omega \)-compatible metric \(g\) in \(C^0\), even though their conformal classes have negative Yamabe constants.\(\square \)

In fact, Jongsu Kim [27, 28] has proved much stronger and more difficult results in this direction. Indeed, he shows that one can always construct \(\omega \)-compatible almost-Kähler metrics \(g\) for which the scalar curvature is everywhere negative, even without conformal rescaling.

Finally, we point out that this phenomenon persists in the toric setting:

Proposition 5

Let \((M^4,\omega )\) be a Hamiltonian \(T\)-space. Then there are \(\omega \)-compatible, \(T^2\)-invariant almost-Kähler metrics \(g_k\) such that \(Y([g_k]) \rightarrow -\infty \).

Proof

On a neighborhood of a \(T^2\) orbit, we can again take coordinates \((x,y,u,v)\) so that (14) holds, with \(y,v\) coordinates on the base, and with \((x,u)\) now \(({\mathbb {R}}/{\mathbb {Z}})\)-valued fiber coordinates adapted to the action. We again consider metrics \(g_f\) as in (15), but with \(f\) now a function of \((y,v)\) only. Choosing a sequence \(f_k\) of such functions which are highly oscillatory in \(v\) in a small region makes the \(L^2\) norm of the Nijenhuis tensor tend to infinity, so that \(\int s_{g_k}\,d\mu _{g_k} \rightarrow -\infty \), while the volume \([\omega ]^2/2\) remains fixed. Hence \(Y([g_{f_k}])\rightarrow -\infty \), as claimed.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeBrun, C. Weyl Curvature, Del Pezzo Surfaces, and Almost-Kähler Geometry. J Geom Anal 25, 1744–1772 (2015). https://doi.org/10.1007/s12220-014-9492-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9492-3

Keywords

Mathematics Subject Classification

Navigation