Skip to main content
Log in

Topological Aspects of Differential Chains

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we investigate the topological properties of the space of differential chains \(\,^{\prime}\mathcal{B}(U)\) defined on an open subset U of a Riemannian manifold M. We show that \(\,^{\prime}\mathcal {B}(U)\) is not generally reflexive, identifying a fundamental difference between currents and differential chains. We also give several new brief (though non-constructive) definitions of the space \(\,^{\prime}\mathcal{B}(U) \), and prove that it is a separable ultrabornological (DF)-space.

Differential chains are closed under dual versions of the fundamental operators of the Cartan calculus on differential forms (Harrison in Geometric Poincare lemma, Jan 2011, submitted; Operator calculus—the exterior differential complex, Jan 2011, submitted). The space has good properties, some of which are not exhibited by currents \(\mathcal{B}'(U)\) or \(\mathcal{D}'(U)\). For example, chains supported in finitely many points are dense in \(\,^{\prime}\mathcal{B}(U)\) for all open UM, but not generally in the strong dual topology of \(\mathcal{B}'(U)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harrison, J.: Geometric Poincare lemma. arXiv:1101.0313v1 (Jan 2011, submitted)

  2. Harrison, J.: Operator calculus—the exterior differential complex. arXiv:1101.0979v1 (Jan 2011, submitted)

  3. Harrison, J.: Stokes’ theorem on nonsmooth chains. Bull. Am. Math. Soc. 29, 235–242 (1993)

    Article  MATH  Google Scholar 

  4. Harrison, J.: Continuity of the integral as a function of the domain. J. Geom. Anal. 8(5), 769–795 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Harrison, J.: Isomorphisms of differential forms and cochains. J. Geom. Anal. 8(5), 797–807 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Harrison, J.: Geometric Hodge star operator with applications to the theorems of Gauss and Green. Math. Proc. Camb. Philos. Soc. 140(1), 135–155 (2006)

    Article  MATH  Google Scholar 

  7. Pugh, H.: Applications of differential chains to complex analysis and dynamics. Harvard senior thesis (2009)

  8. Schaefer, H.: Topological Vector Spaces. McMillan Co., New York (1999)

    Book  MATH  Google Scholar 

  9. Köthe, G.: Topological Vector Spaces, vol. I. Springer, Berlin (1966)

    Google Scholar 

  10. Robertson, A., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1964)

    MATH  Google Scholar 

  11. Bourbaki, N.: Elements of Mathematics: Topological Vector Spaces. Springer, Berlin (1981)

    MATH  Google Scholar 

  12. Valdivia, M.: On the completion of a bornological space. Arch. Math. Basel 29, 608–613 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schwartz, L.: Théorie des Distributions, vol. II. Hermann, Paris (1954)

    Google Scholar 

  14. Grothendieck, A.: Topological Vector Spaces. Gordon & Breach, New York (1973)

    MATH  Google Scholar 

  15. Harrison, J.: Differential complexes and exterior calculus. arXiv:math-ph/0601015v2 (Jan 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Harrison.

Additional information

Communicated by Steven G. Krantz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, J., Pugh, H. Topological Aspects of Differential Chains. J Geom Anal 22, 685–690 (2012). https://doi.org/10.1007/s12220-010-9210-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9210-8

Keywords

Mathematics Subject Classification (2000)

Navigation