Skip to main content
Log in

On the Reconstruction of Conductivity of a Bordered Two-dimensional Surface in ℝ3 from Electrical Current Measurements on Its Boundary

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

An electrical potential U on a bordered real surface X in ℝ3 with isotropic conductivity function σ>0 satisfies the equation d(σ d c U)| X =0, where \(d^{c}= i(\bar{ \partial }-\partial )\), \(d=\bar{ \partial }+\partial \) are real operators associated with a complex (conformal) structure on X induced by the Euclidean metric of ℝ3. This paper gives an exact reconstruction of the conductivity function σ on X from the Dirichlet-to-Neumann mapping U| bX σ d c U| bX . This paper extends to the case of Riemann surfaces the reconstruction schemes of R. Novikov (Funkt. Anal. Prilozh. 22(4):11–22, 1988) and of A. Bukhgeim (J. Inv. Ill-posed Probl. 16:19–34, 2008), given for the case X⊂ℝ2. The paper extends and corrects the statements of Henkin and Michel (J. Geom. Anal. 18:1033–1052, 2008), where the inverse boundary value problem on the Riemann surfaces was first considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, R., Coifman, R.: Multidimensional Inverse Scattering and Nonlinear Partial Differential Equations. Proc. Symp. Pure Math., vol. 43, pp. 45–70. AMS Providence (1985)

    Google Scholar 

  2. Beals, R., Coifman, R.: The spectral problem for the Davey–Stewartson and Ishimori hierarchies. In: Nonlinear Evolution Equations: Integrability and Spectral Methods. Proc. Workshop, Como, Italy 1988, Proc. Nonlinear Sci., pp. 15–23 (1990)

  3. Berenstein, C., Dostal, M.: Some remarks on convolution equations. Ann. Inst. Fourier 23, 55–73 (1973)

    MathSciNet  MATH  Google Scholar 

  4. Boiti, M., Leon, J., Manna, M., Pempinelli, F.: On a spectral transform of a KDV-like equation related to the Schrödinger operator in the plane. Inverse Probl. 3, 25–36 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bukhgeim, A.L.: Recovering a potential from the Cauchy data in the two-dimensional case. J. Inv. Ill-posed Probl. 16, 19–34 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calderon, A.P.: On an inverse boundary problem. In: Seminar on Numerical Analysis and Its Applications to Continuum Physics, pp. 61–73. Soc. Brasiliera de Matematica, Rio de Janeiro (1980)

    Google Scholar 

  7. Druskin, V.L.: The unique solution of the inverse problem in electrical surveying and electrical well logging for piecewise-constant conductivity. Phys. Solid Earth 18(1), 51–53 (1982)

    Google Scholar 

  8. Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: The Schrödinger equation in a periodic field and Riemann surfaces. Dokl. Akad. Nauk SSSR 229, 15–18 (1976) (in Russian), Sov. Math. Dokl. 17, 947–951 (1976)

    MathSciNet  Google Scholar 

  9. Ehrenpreis, L.: Solutions of some problems of division II. Am. J. Math. 77, 286–292 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faddeev, L.D.: Increasing solutions of the Schrödinger equation. Dokl. Akad. Nauk SSSR 165, 514–517 (1965) (in Russian), Sov. Phys. Dokl. 10, 1033–1035 (1966)

    MathSciNet  Google Scholar 

  11. Faddeev, L.D.: The inverse problem in the quantum theory of scattering II. Curr. Probl. Math. 3, 93–180 (1974) (in Russian), J. Sov. Math. 5, 334–396 (1976)

    MathSciNet  Google Scholar 

  12. Fedorjuk, M.V.: Asymptotic: Integrals and Series. Nauka, Moscow (1987) (in Russian)

    Google Scholar 

  13. Gelfand, I.M.: Some problems of functional analysis and algebra. In: Proc. Int. Congr. Math., Amsterdam, pp. 253–276 (1954)

  14. Griffiths, Ph., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  15. Grinevich, P.G., Novikov, S.P.: Two-dimensional inverse scattering problem for negative energies and generalized analytic functions. Funkt. Anal. Prilozh. 22(1), 23–33 (1988) (in Russian), Funct. Anal. and Appl. 22, 19–27 (1988)

    MathSciNet  Google Scholar 

  16. Guillarmou, C., Tzou, L.: Calderón inverse problem for the Schrödinger operator on Riemann surfaces, arXiv:0904.3804 (2009) v.1

  17. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)

    MATH  Google Scholar 

  18. Henkin, G.M.: Cauchy–Pompeiu type formulas for \(\bar{ \partial }\) on affine algebraic Riemann surfaces and some applications, arXiv:0804.3761 (2008) v.1, (2010) v.2

  19. Henkin, G.M., Polyakov, P.L.: Homotopy formulas for the \(\bar{\partial}\)-operator on ℂP n and the Radon–Penrose transform. Math. USSR Izv. 28, 555–587 (1987)

    Article  Google Scholar 

  20. Henkin, G., Michel, V.: On the explicit reconstruction of a Riemann surface from its Dirichlet-to-Neumann operator, GAFA. Geom. Funct. Anal. 17, 116–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Henkin, G., Michel, V.: Inverse conductivity problem on Riemann surfaces. J. Geom. Anal. 18, 1033–1052 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hodge, W.: The Theory and Applications of Harmonic Integrals. Cambridge Univ. Press, Cambridge (1952)

    MATH  Google Scholar 

  23. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990)

    MATH  Google Scholar 

  24. Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements II. Commun. Pure Appl. Math. 38, 644–667 (1985)

    Article  MathSciNet  Google Scholar 

  25. Nachman, A.: Global uniqueness for a two-dimensional inverse boundary problem. Ann. Math. 143, 71–96 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Novikov, R.: Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude at fixed energy. Funkt. Anal. Prilozh. 20(3), 90–91 (1986) (in Russian), Funct. Anal. Appl. 20, 246–248 (1986)

    Google Scholar 

  27. Novikov, R.: Multidimensional inverse spectral problem for the equation −Δψ+(v(x)−Eu(x))ψ=0. Funkt. Anal. Prilozh. 22(4), 11–22 (1988) (in Russian), Funct. Anal. Appl. 22, 263–278 (1988)

    Google Scholar 

  28. Novikov, R.: The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator. J. Funct. Anal. 103(2), 409–463 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Novikov, S.P., Veselov, A.P.: Two-dimensional Schrödinger operators in periodic fields. Curr. Probl. Math. 23, 3–32 (1983) (in Russian)

    Google Scholar 

  30. Rodin, Y.: Generalized Analytic Functions on Riemann Surfaces. Lecture Notes Math., vol. 1288. Springer, Berlin (1987)

    MATH  Google Scholar 

  31. Sylvester, J., Uhlmann, G.: A uniqueness theorem for an inverse boundary value problem in electrical prospection. Commun. Pure Appl. Math. 39, 91–112 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tsai, T.Y.: The Schrödinger operator in the plane. Inverse Probl. 9, 763–787 (1993)

    Article  MATH  Google Scholar 

  33. Vekua, I.N.: Generalized Analytic Functions. Pergamon, Elmsford (1962)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Henkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henkin, G.M., Novikov, R.G. On the Reconstruction of Conductivity of a Bordered Two-dimensional Surface in ℝ3 from Electrical Current Measurements on Its Boundary. J Geom Anal 21, 543–587 (2011). https://doi.org/10.1007/s12220-010-9158-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9158-8

Keywords

Mathematics Subject Classification (2000)

Navigation