Skip to main content
Log in

On the Existence of Min-Max Minimal Torus

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we will study the existence problem of min-max minimal torus. We use classical conformal invariant geometric variational methods. We prove a theorem about the existence of min-max minimal torus in Theorem 5.1. First we prove a strong uniformization result (Proposition 3.1) using the method of Ahlfors and Bers (Ann. Math. 72(2):385–404, 1960). Then we use this proposition to choose good parameterization for our min-max sequences. We prove a compactification result (Lemma 4.1) similar to that of Colding and Minicozzi (Width and finite extinction time of Ricci flow, 0707.0108 [math.DG], 2007), and then give bubbling convergence results similar to that of Ding et al. (Invent. math. 165:225–242, 2006). In fact, we get an approximating result similar to the classical deformation lemma (Theorem 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L., Bers, L.: Riemann’s mapping theorem for variable metrics. Ann. Math. 72(2), 385–404 (1960)

    Article  MathSciNet  Google Scholar 

  2. Chen, J., Tian, G.: Compactification of moduli space of harmonic mappings. Comment. Math. Helv. 74, 201–237 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Colding, T., Minicozzi, W. II: Minimal surfaces. Courant Lecture Notes in Mathematics, vol. 4. New York University, Courant Institute of Mathematical Sciences, New York (1999)

    MATH  Google Scholar 

  4. Colding, T., Minicozzi, W. II: Width and finite extinction time of Ricci flow. 0707.0108 [math.DG]

  5. Ding, W.: Lectures on the heat flow of harmonic maps. Preprint

  6. Ding, W., Li, J., Liu, Q.: Evolution of minimal torus in Riemannian manifolds. Invent. Math. 165, 225–242 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jost, J.: Two Dimensional Geometric Variational Problems. Wiley, Chichester (1991)

    MATH  Google Scholar 

  8. Jost, J.: Compact Riemann Surfaces. Springer, Berlin (2002)

    MATH  Google Scholar 

  9. Qing, J.: Boundary regularity of weakly harmonic maps from surfaces. J. Funct. Anal. 114, 458–466 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. 113(2), 1–24 (1981)

    Article  MathSciNet  Google Scholar 

  11. Sacks, J., Uhlenbeck, K.: Minimal immersions of closed Riemann surfaces. Trans. Am. Math. Soc. 271, 639–652 (1982)

    MATH  MathSciNet  Google Scholar 

  12. Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Ann. Math. 110(2), 127–142 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhou.

Additional information

Communicated by Jiaping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X. On the Existence of Min-Max Minimal Torus. J Geom Anal 20, 1026–1055 (2010). https://doi.org/10.1007/s12220-010-9137-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9137-0

Keywords

Mathematics Subject Classification (2000)

Navigation