Skip to main content
Log in

An Integral Formula for Lipschitz-Killing Curvature and the Critical Points of Height Functions

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We have established (see Shiohama and Xu in J. Geom. Anal. 7:377–386, 1997; Lemma) an integral formula on the absolute Lipschitz-Killing curvature and critical points of height functions of an isometrically immersed compact Riemannian n-manifold into R n+q. Making use of this formula, we prove a topological sphere theorem and a differentiable sphere theorem for hypersurfaces with bounded L n/2 Ricci curvature norm in R n+1. We show that the theorems of Gauss-Bonnet-Chern, Chern-Lashof and the Willmore inequality are all its consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allendoerfer, C.B.: The Euler number of a Riemannian manifold. Am. J. Math. 62, 243–248 (1940)

    Article  MathSciNet  Google Scholar 

  2. Allendoerfer, C.B., Weil, A.: The Gauss-Bonnet theorem for Riemannian polyhedra. Trans. Am. Math. Soc. 53, 101–129 (1943)

    MathSciNet  MATH  Google Scholar 

  3. Anderson, M.T.: Degeneration of metrics with bounded curvature and applications to critical metrics of Riemannian functionals. In: Green, R., Yau, S.-T. (eds.) Differential Geometry. Proc. Symp. Pure Math., vol. 54, pp. 53–79. Am. Math. Soc., Providence (1993)

    Google Scholar 

  4. Chen, B.Y.: On a theorem of Fenchel-Borsuk-Willmore-Chern-Lashof. Math. Ann. 194, 19–26 (1971)

    Article  MathSciNet  Google Scholar 

  5. Chern, S.S.: A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. Math. 45, 747–752 (1944)

    Article  MathSciNet  Google Scholar 

  6. Chern, S.S., Lashof, R.K.: On the total curvature of immersed manifolds II. Mich. Math. J. 5, 5–12 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demailly, J.P.: Champs magnétiques et inégalités de Morse pour la d″-cohomologie. Ann. Inst. Fourier (Grenoble) 35(4), 189–229 (1985) (in French)

    MathSciNet  MATH  Google Scholar 

  8. Fenchel, W.: On total curvatures of Riemannian manifolds. J. Lond. Math. Soc. 15, 15–22 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grove, K., Shiohama, K.: A generalized sphere theorem. Ann. Math. 106, 201–211 (1977)

    Article  MathSciNet  Google Scholar 

  10. Milnor, J.W.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  11. Patodi, V.K.: Curvature and the eigenforms of the Laplace operator. J. Differ. Geom. 5, 233–249 (1971)

    MathSciNet  MATH  Google Scholar 

  12. Schoen, R., Yau, S.-T.: Lectures on differential geometry. In: Conference Proceedings and Lecture Notes in Geometry and Topology I. International Press, Cambridge (1994)

    Google Scholar 

  13. Shiohama, K., Xu, H.W.: Lower bound for L n/2 curvature norm and its application. J. Geom. Anal. 7, 377–386 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Shiohama, K., Xu, H.W.: The topological sphere theorem for complete submanifolds. Compos. Math. 107, 221–232 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shiohama, K., Xu, H.W.: Rigidity and sphere theorems for submanifolds I. Kyushu J. Math. 48, 291–306 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shiohama, K., Xu, H.W.: Rigidity and sphere theorems for submanifolds II. Kyushu J. Math. 54, 103–109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Xu, H.W., Zhao, E.T.: Topological and differentiable sphere theorems for complete submanifolds. Commun. Anal. Geom. 17, 565–585 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Yu, Y.L.: Combinatorial Gauss-Bonnet-Chern formula. Topology 22, 153–163 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, W.P.: Lectures on Chern-Weil Theory and Witten Deformations. Nankai Tracts in Mathematics, vol. 4. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Xu.

Additional information

Communicated by Robert Greene.

Research supported by the NSFC, Grant No. 10771187; the Trans-Century Training Program Foundation for Talents by the Ministry of Education of China; and the Natural Science Foundation of Zhejiang Province, Grant No. 101037.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiohama, K., Xu, HW. An Integral Formula for Lipschitz-Killing Curvature and the Critical Points of Height Functions. J Geom Anal 21, 241–251 (2011). https://doi.org/10.1007/s12220-010-9116-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9116-5

Keywords

Mathematics Subject Classification (2000)

Navigation