Skip to main content
Log in

Inverse Conductivity Problem on Riemann Surfaces

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

An electrical potential U on a bordered Riemann surface X with conductivity function σ>0 satisfies equation d(σ d c U)=0. The problem of effective reconstruction of σ from electrical currents measurements (Dirichlet-to-Neumann mapping) on the boundary: U| bX σ d c U| bX is studied. We extend to the case of Riemann surfaces the reconstruction scheme given, firstly, by R. Novikov (Funkc. Anal. Ego Priloz. 22:11–22, 2008) for simply connected X. We apply for this new kernels for \(\bar{ \partial }\) on the affine algebraic Riemann surfaces constructed in Henkin (arXiv:0804.3761, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, R., Coifman, R.: Multidimensional inverse scattering and nonlinear partial differential equations. Proc. Symp. Pure Math. 43, 45–70 (1985)

    MathSciNet  Google Scholar 

  2. Beals, R., Coifman, R.: The spectral problem for the Davey-Stewartson and Ishimori hierarchies. In: Nonlinear Evolution Equations: Integrability and Spectral Methodes. Proc. Workshop, Como, Italy, 1988, Proc. Nonlinear Sci., pp. 15–23 (1990)

  3. Belishev, M.I.: The Calderon problem for two dimensional manifolds by the BC-method. SIAM J. Math. Anal. 35(1), 172–182 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brown, R., Uhlmann, G.: Uniqueness in the inverse conductivity problem for non-smooth conductivities in two dimensions. Commun. Partial Differ. Equ. 22, 1009–1027 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calderon, A.P.: On an inverse boundary problem. In: Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasiliera de Matematica, Rio de Janeiro, pp. 61–73 (1980)

  6. Faddeev, L.D.: Increasing solutions of the Schrödinger equation. Dokl. Akad. Nauk SSSR 165, 514–517 (1965) (in Russian). Sov. Phys. Dokl. 10, 1033–1035 (1966)

    MathSciNet  Google Scholar 

  7. Faddeev, L.D.: The inverse problem in the quantum theory of scattering II. Curr. Probl. Math. 3, 93–180 (1974) (in Russian). J. Sov. Math. 5, 334–396 (1976)

    MathSciNet  Google Scholar 

  8. Gel’fand, I.M.: Some problems of functional analysis and algebra. In: Proc. Int. Congr. Math., Amsterdam, pp. 253–276 (1954)

  9. Grinevich, P.G., Novikov, S.P.: Two-dimensional “inverse scattering problem” for negative energies and generalized analytic functions. Funct. Anal. Appl. 22, 19–27 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Henkin, G.M.: Two-dimensional electrical tomography and complex analysis. In: Lecture at the Mathematical Weekend. European Math. Soc., Nantes, June 16–18 2006. http://univ-nantes.fr/WEM2006

  11. Henkin, G.M.: Cauchy-Pompeiu type formulas for \(\bar{ \partial }\) on affine algebraic Riemann surfaces and some applications. arXiv:0804.3761 (2008)

  12. Henkin, G.M., Michel, V.: On the explicit reconstruction of a Riemann surface from its Dirichlet-Neumann operator. 17, 116–155 (2007)

  13. Lassas, M., Uhlmann, G.: On determining a Riemann manifold from the Dirichlet-to-Neumann map. Ann. Sci. Ec. Norm. Supper. 34, 771–787 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Novikov, R.: Multidimensional inverse spectral problem for the equation −Δψ+(vEu)ψ=0. Funkc. Anal. Ego Priloz. 22, 11–22 (1988) (in Russian). Funct. Anal. Appl. 22, 263–278 (1988)

    Google Scholar 

  15. Novikov, R.: The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator. J. Funct. Anal. 103, 409–463 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Novikov, R.: Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude at fixed energy. Funkc. Anal. Ego Priloz. 20, 90–91 (1986) (in Russian). Funct. Anal Appl. 20, 246–248 (1986)

    Google Scholar 

  17. Nachman, A.: Global uniqueness for a two-dimensional inverse boundary problem. Ann. Math. 143, 71–96 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rodin, Y.: Generalized Analytic Functions on Riemann Surfaces. Lecture Notes Math., vol. 1288. Springer, Berlin (1987)

    MATH  Google Scholar 

  19. Sylvester, J.: An anisotropic inverse boundary value problem. Commun. Pure Appl. Math. 43, 201–232 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sylvester, J., Uhlmann, G.: A uniqueness theorem for an inverse boundary value problem in electrical prospection. Commun. Pure Appl. Math. 39, 91–112 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tsai, T.Y.: The Shrödinger equation in the plane. Inverse Prob. 9, 763–787 (1993)

    Article  MATH  Google Scholar 

  22. Vekua, I.N.: Generalized Analytic Functions. Pergamon, Elmsford (1962)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadi Henkin.

Additional information

Communicated by Steven Krantz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henkin, G., Michel, V. Inverse Conductivity Problem on Riemann Surfaces. J Geom Anal 18, 1033–1052 (2008). https://doi.org/10.1007/s12220-008-9035-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-008-9035-x

Keywords

Mathematics Subject Classification (2000)

Navigation