Skip to main content
Log in

Transitions of the Thermocapillary Flow in a Liquid Bridge under the Effect of Non-uniform Rotating Magnetic Field

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In this study, a linear stability analysis (LSA) based on a spectral element method and three-dimensional numerical simulations based on the finite volume method are applied to investigate the transition of the thermocapillary flow in a liquid bridge under the external non-uniform rotating magnetic field (NRMF). The Taylor number (Ta) characterising the strength of the NRMF varies from 0 to 1.5 × 104 and the magnetic Reynolds number is fixed at Reω = 2.2 × 104. The LSA results reveal different transitional behaviours of the thermocapillary flow with increasing Taylor number for various Marangoni number (Ma) regimes. For the Ma ranging from 21.07 to 26.6, with the increase of Ta, the thermocapillary flow will undergo three transitions: firstly from a three-dimensional oscillatory flow (with an azimuthal wavenumber k = 2) to an axisymmetric steady flow, then from the axisymmetric steady flow back to an oscillatory flow (k = 1), and finally to an axisymmetric steady flow again. While, beyond that, the thermocapillary flow only occurs one transition from a three-dimensional oscillatory flow (either k = 2 or k = 1) to an axisymmetric steady one. And for the Ma < 18.98, the thermocapillary flow remains axisymmetric and steady over the range of the Taylor numbers considered in this paper. In addition, the corresponding results of three-dimensional numerical simulations based on FVM support the LSA results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bazzi, H., Nguyen, C.T., Galanis, N.: Numerical study of the unstable thermocapillary flow in a silicon float zone under µ–g condition. Int. J. Therm. Sci. 40(8), 702–716 (2001)

    Article  Google Scholar 

  • Boppana, V., Gajjar, J.: Global flow instability in a lid-driven cavity. Int. J. Numer. Meth. Fluids 62, 827–853 (2010)

    MathSciNet  MATH  Google Scholar 

  • Chen, Q.S., Hu, W.R.: Numerical investigation on a simulation model of floating zone convection. Int. J. Heat Mass Transf. 40(4), 757–763 (1997)

    Article  Google Scholar 

  • Chen, Q.S., Jiang, Y.N.: Instabilities of vortex rings generated by surface-tension gradients between co-axial disks. Int. Commun. Heat Mass Transfer 39(10), 1542–1545 (2012)

    Article  Google Scholar 

  • Dold, P., Benz, K.W.: Rotating magnetic fields: Fluid flow and crystal growth applications. Prog. Cryst. Growth Charact. Mater. 38(1–4), 39–58 (1999)

    Article  Google Scholar 

  • Dold, P., Cröll, A., Lichtensteiger, M., Kaiser, Th., Benz, K.W.: Floating zone growth of silicon in magnetic fields IV. Rotating magnetic fields. J. Cryst. Growth 231(1–2), 95–106 (2001)

    Article  Google Scholar 

  • Fischer, B., Friedrich, J., Weimann, H., Müller, G.: The use of time-dependent magnetic fields for control of convective flows in melt growth configurations. J. Cryst. Growth. 198/199(1), 170–175 (1999)

    Article  Google Scholar 

  • Gelfgat, Y.M., Krumin, J., Abricka, M.: Rotating magnetic fields as a means to control the hydrodynamics and heat transfer in single crystal growth processes. Prog. Cryst. Growth Charact. Mater. 38(1–4), 73–132 (1999)

    Article  Google Scholar 

  • Gelfgat, Y., Krumins, J., Li, B.Q.: Effects of system parameters on MHD flows in rotating magnetic fields. J. Cryst. Growth 210(4), 788–796 (2000)

    Article  Google Scholar 

  • Gelfgat, Y.M., Priede, J.: MHD flows in a rotating magnetic field (a review). Magnetohydrodynamics 31(1–2), 188–200 (1995)

    MATH  Google Scholar 

  • Imaishi, N., Yasuhiro, S., Akiyama, Y., Yoda, S.: Numerical simulation of oscillatory Marangoni flow in half-zone liquid bridge of low Prandtl number fluid. J. Cryst. Growth 230(1–2), 164–171 (2001)

    Article  Google Scholar 

  • Jaber, T.J., Saghir, M.Z., Viviani, A.: Three-dimensional modelling of GeSi growth in presence of axial and rotating magnetic fields. Eur. J. Mech. B. Fluids 28(2), 214–223 (2009)

    Article  Google Scholar 

  • Kakimoto, K.: Effects of rotating magnetic fields on temperature and oxygen distributions in silicon melt. J. Cryst. Growth 237–239(3), 1785–1790 (2002)

    Article  Google Scholar 

  • Kang, Q., Jiang, H., Duan, L., Zhang, C., Hu, W.: The critical condition and oscillation - transition characteristics of thermocapillary convection in the space experiment on SJ-10 satellite. Int. J. Heat Mass Transf. 135, 479–490 (2019)

    Article  Google Scholar 

  • Kang, Q., Wu, D., Duan, L., Zhang, J.Q., Zhou, B., Wang, J., Han, Z.Y., Hu, L., Hu, W.R.: Space experimental study on wave modes under instability of thermocapillary convection in liquid bridges on Tiangong-2. Phys. Fluids 32(3), (2020)

  • Lan, C.W., Liang, M.C.: Modulating dopant segregation in floating-zone silicon growth in magnetic fields using rotation. J. Cryst. Growth 180(3–4), 381–387 (1997)

    Article  Google Scholar 

  • Lappa, M.: Review: Possible strategies for the control and stabilization of Marangoni flow in laterally heated floating zones. Fluid Dyn Mater Process 1(2), 171–188 (2005)

    Google Scholar 

  • Lappa, M., Savino, R., Monti, R.: Three-dimensional numerical simulation of Marangoni instabilities in non-cylindrical liquid bridges in microgravity. Int. J. Heat Mass Transf. 44(10), 1983–2003 (2001)

    Article  Google Scholar 

  • Lappa, M.: Three-dimensional numerical simulation of Marangoni flow instabilities in floating zones laterally heated by an equatorial ring. Phys. Fluids 15(3), 776–789 (2003)

    Article  Google Scholar 

  • Le, C., Liu, L., Li, Z.: Thermocapillary instabilities in half zone liquid bridges of low Prandtl fluid with non-equal disks under microgravity. J. Cryst. Growth 560–561, 126063 (2021)

    Article  Google Scholar 

  • Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK users' guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods 6, (1998)

  • Levenstam, M., Amberg, G.: Hydrodynamical instabilities of thermocapillary flow in a half-zone. J. Fluid Mech. 297, 357–372 (1995)

    Article  MathSciNet  Google Scholar 

  • Liu, Y., Ai, F., Pan, X.H., Zhang, Y., Zhou, Y.F., Feng, C.D.: Effects of rotating magnetic field on Bi12SiO20 crystal growth by vertical zone-melting technique. J. Cryst. Growth 312, 1622–1626 (2010)

    Article  Google Scholar 

  • Liu, H., Zeng, Z.Z., Qiu, H. Yin, L.M., Xiao, Y.: Thermocapillary Flow Instabilities in a Rotating Annular Pool for Moderate-Prandtl-number Fluid. Microgravity Sci. Technol. 33, (2021)

  • Ma, N., Walker, J.S., Witkowski, L.M.: Combined Effects of Rotating Magnetic Field and Rotating System on the Thermocapillary Instability in the Floating Zone Crystal Growth Process. J. Heat Transfer 126(2), 230–235 (2004)

    Article  Google Scholar 

  • Mößner, R., Gerbeth, G.: Buoyant melt flows under the influence of steady and rotating magnetic fields. J. Cryst. Growth 197(1–2), 341–354 (1999)

    Article  Google Scholar 

  • Schwabe, D., Scharmann, A., Preisser, F., Oeder, R.: Experiments on surface tension driven flow in floating zone melting. J. Cryst. Growth 43(3), 305–312 (1978)

    Article  Google Scholar 

  • Stojanovic, M., Kuhlmann, H.C.: Stability of Thermocapillary Flow in High-Prandtl-Number Liquid Bridges Exposed to a Coaxial Gas Stream. Microgravity Sci. Technol. 32, 953–959 (2020)

    Article  Google Scholar 

  • Vizman, D., Fischer, B., Friedrich, J., Müller, G.: 3D numerical simulation of melt flow in the presence of a rotating magnetic field. Int. J. Numer. Meth. Heat Fluid Flow 10(4), 366–384 (2000)

    Article  Google Scholar 

  • Walker, J.S., Witkowski, L.M., Houchens, B.C.: Effects of a rotating magnetic field on the thermocapillary instability in the floating zone process. J. Cryst. Growth 252(1–3), 413–423 (2003)

    Article  Google Scholar 

  • Wang, X., Ma, N., Bliss, D.F., Iseler, G.W., Becla, P.: parametric Study of Modified Vertical Bridgman Growth in a Rotating Magnetic Field. J. Thermophys. Heat Transfer 20(3), 384–388 (2006)

    Article  Google Scholar 

  • Wang, J., Wu, D., Duan, L., Kang, Q.: Ground experiment on the instability of buoyant-thermocapillary convection in large-scale liquid bridge with large Prandtl number. Int. J. Heat Mass Transf. 108, 2107–2119 (2017)

    Article  Google Scholar 

  • Wanschura, M., Shevtsova, V., Kuhlmann, H., Rath, H.: Convective instability mechanisms in thermocapillary liquid bridges. Phys. Fluids 7, 912–925 (1995)

    Article  Google Scholar 

  • Yano, T., Maruyama, K., Matsunaga, T., Nishino, K.: Effect of ambient gas flow on the instability of Marangoni convection in liquid bridges of various volume ratios. Int. J. Heat Mass Transf. 99, 182–191 (2016)

    Article  Google Scholar 

  • Yao, L.P., Zeng, Z., Li, X.H., Chen, J.Q., Zhang, Y.X., Mizuseki, H., Kawazoe, Y.: Effects of rotating magnetic fields on thermocapillary flow in a floating half-zone. J. Cryst. Growth 316(1), 177–184 (2011)

    Article  Google Scholar 

  • Yao, L.P., Zeng, Z., Zhang, Y., Qiu, Z.Q., Mei, H., Zhang, L.Q., Zhang, Y.X.: Influence of rotating magnetic field strength on three-dimensional thermocapillary flow in a floating half-zone mode. Heat Mass Transf. 48(12), 2103–2111 (2012)

    Article  Google Scholar 

  • Yao, L.P., Zeng, Z., Zhang, L.Q., Lei, C.W.: Convection and instability of thermocapillary flow in a liquid bridge subject to a non-uniform rotating magnetic field. Int. Commun. Heat Mass Transfer 87, 52–60 (2017)

    Article  Google Scholar 

  • Yin, L.M., Zeng, Z., Qiu, Z.H., Mei, H., Zhang, L.Q., Zhang, Y.X.: Linear stability analysis of thermocapillary flow in a slowly rotating shallow annular pool using spectral element method. Int. J. Heat Mass Transf. 97, 353–363 (2016)

    Article  Google Scholar 

  • Zeng, Z., Mizuseki, H., Simamura, K., Fukuda, T., Higashino, K., Kawazoe, Y.: Three-dimensional oscillatory thermocapillary convection in liquid bridge under microgravity. Int. J. Heat Mass Transf. 44(19), 3765–3774 (2001)

    Article  Google Scholar 

  • Zhang, Y., Huang, H., Zhang, X., Zou, YEngineering Applications of Computational Fluid Mechanics., Tang, S.: The effect of aspect ratio and axial magnetic field on thermocapillary convection in liquid bridges with a deformable free-surface. Eng Appl Comput Fluid Mech 10(1), 16–28 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11402215 and No. 11572062), the Fundamental Research Funds for the Central Universities (Grant No. XDJK2019B060), and the Chongqing Natural Science Foundation (Grant No. cstc2014jcyjA00013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Zeng, Z., Liu, H. et al. Transitions of the Thermocapillary Flow in a Liquid Bridge under the Effect of Non-uniform Rotating Magnetic Field. Microgravity Sci. Technol. 33, 69 (2021). https://doi.org/10.1007/s12217-021-09919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09919-y

Keywords

Navigation