Skip to main content
Log in

Transition to Chaos of Buoyant-Thermocapillary Convection in Large-Scale Liquid Bridges

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

To cooperate with the Chinese TG-2 space experiment project, the transition routes to chaos of buoyant-thermocapillary convection were experimentally researched in large-scale liquid bridge of 2cSt silicone oil with 20 mm in diameter. A Nanovoltmeter with high resolution was adopted to measure the dynamical temperature oscillations, as well as to detect the convective transitional behaviors which were nonlinear and non-stationary. The existence of the quasi-periodic route and the Feigenbaum route has been confirmed in large-scale LBs, and a novel periodic oscillation state was discussed in detail for the first time. The chaotic characteristics were verified by analyzing the maximum Lyapunov exponent and correlation dimension on the basis of a phase-space reconstruction. Additionally, it was found that bifurcation could potentially lead to the reconstruction of flow fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aa, Y., Li, K., Tang, Z.M., et al.: Period-doubling bifurcations of the thermocapillary convection in a floating half zone[J]. Science China Physics, Mechanics and Astronomy. 53(9), 1681–1686 (2010)

    Google Scholar 

  • Albanese C, Carotenuto L, Castagnolo D, et al. First results from[J]. Onset” Experiment During D2 Space Mission,” in Scientific Results of German Spacelab Mission D-2, PR Sahm, MH Keller, and B. Schiewe, eds., DARA, Bonn, 1995: 247–258

  • Bucchignani, E., Mansutti, D.: Horizontal thermal convection of succinonitrile: steady state, instablities, and transition to chaos. Physical Review E. 69(5), 056319 (2004)

    Google Scholar 

  • Chen, Q.S., Hu, W.R.: Influence of liquid bridge volume on instability of floating half zone convection[J]. Int. J. Heat Mass Transf. 41(6–7), 825–837 (1998)

    MATH  Google Scholar 

  • Chun C.H., Verification of turbulence developing from the oscillatory Marangoni convection in a liquid column, Proc. 5th European Symp. On Material Science and Microgravity, Schloss Elmau, 5–7 Nov. 1984, ESA SP-222: 271–280

  • Duan, L., Duan, L., Jiang, H., Kang, Q.: Oscillation transition routes of buoyant-Thermocapillary convection in annular liquid layers[J]. Microgravity Science and Technology. 30(6), 865–876 (2018)

    Google Scholar 

  • Frank, S., Schwabe, D.: Temporal and spatial elements of thermocapillary convection in floating zones[J]. Exp. Fluids. 23(3), 234–251 (1997)

    Google Scholar 

  • Gollub, J.P., Benson, S.V.: Many routes to turbulent convection. J. Fluid Mech. 100, 449–470 (1980)

    Google Scholar 

  • Wenrui Hu, Zemei Tang, Floating Zone Convection in Crystal Growth Modeling, Science Press, Beijing, New York, 2003, pp. 8–12

  • Huang, N.E.: Introduction to the Hilbert–Huang transform and its related mathematical problems. Hilbert–Huang Transform Applications. 5, 1–26 (2005)

    MathSciNet  Google Scholar 

  • Jiang, H., Duan, L., Kang, Q.: A peculiar bifurcation transition route of thermocapillary convection in rectangular liquid layers. Exp. Thermal Fluid Sci. 88, 8–15 (2017)

    Google Scholar 

  • Kang, Q., Duan, L., Zhang, L., Yin, Y., Yang, J., Hu, W.: Thermocapillary convection experiment facility of an open cylindrical annuli for SJ-10 satellite. Microgravity Sci. Technol. 2(28), 123–132 (2016)

    Google Scholar 

  • Kawamura, H., Nishino, K., Mastumoto, S.: Report on microgravity experiments of Maragoni convection aboard international space station. Trans. ASME J. Heat Transfer. 134, 031005–031018 (2012)

    Google Scholar 

  • Kitano, K., Yabuzaki, T., Ogawa, T.: Symmetry-recovering crises of chaos in polarization related optical bistability. Phys. Rev. A. 29(3), 1288–1296 (1984)

    MathSciNet  Google Scholar 

  • Landau, L.D.: On the problem of turbulence[C]//Dokl. Akad. Nauk SSSR. 44(8), 339–349 (1944)

    Google Scholar 

  • Lappa M. Thermal convection: patterns, evolution and stability, 2009, John Wiley

  • Levenstam, M., Amberg, G.: Hydrodynamic instabilities of thermocapillary flow in half zone. Fluid Mech. 297, 357–372 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Leypoldt, J., Kuhlmann, H.C., Rath, H.J.: Three-dimensional numerical simulation of thermocapillary flows in cylindrical liquid bridges[J]. J. Fluid Mech. 414, 285–314 (2000)

    Article  MATH  Google Scholar 

  • Li, K., Xun, B., Imaishi, N., et al.: Thermocapillary flows in liquid bridges of molten tin with small aspect ratios[J]. Int. J. Heat Fluid Flow. 29(4), 1190–1196 (2008)

    Article  Google Scholar 

  • Li, Y.S., Chen, Z., Zhan, J.: Double-diffusive Marangoni convection in a rectangular cavity: Transition to chaos. International Journal of Heat and Mass Transfer. 53(23/24), 5223–5231 (2010)

    MATH  Google Scholar 

  • Li, J., Wang, H., Shichao, L.: A novel phosphorus-silicon containing epoxy resin with enhanced thermal stability, flame retardancy and mechanical properties. Polym. Degrad. Stab. 164, 36–45 (2019)

    Google Scholar 

  • Melnikov, D.E., Shevtsova, V.M., Legros, J.C.: Onset of temporal aperiodicity in high Prandtl number liquid bridge under terrestrial conditions. Phys. Fluids. 16(5), 1746–1757 (2004)

    MathSciNet  MATH  Google Scholar 

  • Melnikov, D.E., Shevtsova, V.M., Legros, J.C.: Route to aperiodicity followed by high Prandtl-number liquid bridge. 1-g case. Acta Astronautica. 56(6), 601–611 (2005)

    Google Scholar 

  • Mukutmoni, D., Yang, K.T.: Thermal-convection in small enclosure-an atypical bifurcation sequence. International of Heat and Mass Transfer. 38(1), 113–126 (1995)

    MATH  Google Scholar 

  • Newhouse, S., Ruelle, D., Takens, F.: Occurrence of strange AxiomA attractors near quasi periodic flows onT m, m≧ 3[J]. Commun. Math. Phys. 64(1), 35–40 (1978)

    MATH  Google Scholar 

  • Nishino, K., Yano, T., Kawamura, H., Matsumoto, S., Ueno, I., Ermakov, M.K.: Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity. J. Crystal Growth. 420, 57–63 (2015)

    Google Scholar 

  • Ostrach, S.: Low-gravity fluid flows[J]. Annu. Rev. Fluid Mech. 14(1), 313–345 (1982)

    MATH  Google Scholar 

  • Paul, S., Wahi, P., Verma, M.K.: Bifurcations and chaos in large-Prandtl number Rayleigh– Benard convection. Int. J. Non-Linear Mech. 46, 772–781 (2011)

    Google Scholar 

  • Pomeau, Y., Manneville, P.: Intermittent Transition to Turbulence in Dissipative Dynamical Systems. Communications in Mathematical Physics. 74, 189–197 (1980)

    MathSciNet  Google Scholar 

  • Rahal, S., Cerisier, P., Abid, C.: Transition to chaos via the quasi-periodicity and characterization of attractors in confined Benard–Marangoni convection. Eur. Phys. J. B. 59(4), 509–518 (2007)

    Google Scholar 

  • Schwabe, D., Frank, S.: Experiments on the transition to chaotic thermocapillary flow in floating zones under microgravity[J]. Adv. Space Res. 24(10), 1391–1396 (1999)

    Google Scholar 

  • Tang, Z.M., Hu, W.R.: Fractal features of oscillatory convection in the half-floating zone[J]. Int. J. Heat Mass Transf. 38(17), 3295–3303 (1995)

    Google Scholar 

  • Tang, Z.M., Hu, W.R., Imaishi, N.: Two bifurcation transitions of the floating half zone convection. Int. J. Heat Mass Transf. 44, 1299–1307 (2001)

    MATH  Google Scholar 

  • Ueno, I., Tanaka, S., Kawamura, H.: Oscillatory and chaotic thermocapillary convection in a half-zone liquid bridge[J]. Phys. Fluids. 15(2), 408–416 (2003)

    MATH  Google Scholar 

  • Wang, J.,Wu, D., Duan, L., Kang, Q.: Ground experiment on the instability of buoyant-thermocapillary convection in large-scale liquid bridge with large Prandtl number. Int. J. Heat Mass Transf. 108, 2107–2119 (2017)

  • Wang, J., Duan, L., Kang, Q.: Oscillatory and chaotic bouyant-thermocapillary convection in a large scale liquid bridge. Chin. Phys. Lett. 34(7), 074703 (2017)

    Google Scholar 

  • Watanabe, T., Melnikov, D.E., Matsugase, T., et al.: The stability of a thermocapillary-buoyant flow in a liquid bridge with heat transfer through the interface[J]. Microgravity Science and Technology. 26(1), 17–28 (2014)

    Google Scholar 

  • Yan, A., Zhong-Hua, C., Wen-Rui, H.: Transition to Chaos in the floating half zone convection[J]. Chin. Phys. Lett. 24(2), 475 (2007)

    Article  Google Scholar 

  • Yano, T., Nishino, K., Kawamura, H., Ueno, I., Matsumoto, S., Ohnishi, M.: Masato. Sakural, 3-D PTV measurement of Marangoni convection in liquid bridge in space experiment. Exp. Fluids. 53, 9–20 (2012)

    Article  Google Scholar 

  • Yasnou, V., Gaponenkoab, Y., Mialduna, A., Shevtsovaa, V.: Influence of a coaxial gas flow on the evolution of oscillatory states in a liquid bridge. Int. J. Heat Mass Transf. 123, 747–759 (2018)

  • Zhang, L., Duan, L., Kang, Q.: An experimental research on surface oscillation of buoyant-thermocapillary convection in an open cylindrical annuli. Acta Mechanica Sinica. 30(5), 681–686 (2014)

    Google Scholar 

  • Zhu, P., Zhou, B., Duan, L., et al.: Characteristics of surface oscillation in thermocapillary convection[J]. Exp. Thermal Fluid Sci. 35(7), 1444–1450 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Duan or Qi Kang.

Additional information

This article belongs to the Topical Collection: Thirty Years of Microgravity Research - A Topical Collection Dedicated to J. C. Legros

Guest Editor: Valentina Shevtsova

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, D., Duan, L. et al. Transition to Chaos of Buoyant-Thermocapillary Convection in Large-Scale Liquid Bridges. Microgravity Sci. Technol. 32, 217–227 (2020). https://doi.org/10.1007/s12217-019-09770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09770-2

Keywords

Navigation