Skip to main content
Log in

Experimental Investigation of Large Droplet Impact with Application to SLD Icing

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

SLD icing requires the understanding of micrometer-sized droplets impacting at velocities beyond 50 m/s. This paper proposes an experimental investigation of fast impinging large droplets under non-icing conditions. Three aspects of the impact are analyzed: the splash dynamics as a function of the surface nature, the deposition rate, and the secondary drop characteristics for various primary drop characteristics. Examination of images obtained for a clean surface and for a blotter paper surface shows significant differences in terms of the amount of water reemitted. The measurement of the deposition rate confirmed that the dynamics of drop impingement on blotter paper is not the same as impingement on a clean surface. The characterization of the secondary ejected drops shows significant discrepancies with respect to the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Berthoumieu, P.: Experimental study of supercooled large drops impact in an icing wind tunnel. AIAA 2012–3130 (2012)

  • Bodoc, V., Berthoumieu, P.: Experimental investigation of high speed SLD impact, SAE International Conference on Icing of Aircraft, Engines and Structures, Minneapolis (2019)

  • Breitenbach, J., Roisman, I.V., Tropea, C.: From drop impact physics to spray cooling models: a critical review. Exp. Fluids 59(3), 1–21 (2018)

    Article  Google Scholar 

  • Cimpeanu, R., Papageorgiou, D.T.: Three-dimensional high speed drop impact onto solid surfaces at arbitrary angles. Int. J. Multiphase Flow 107, 192–207 (2018)

    Article  Google Scholar 

  • Cossali, G.E., Coghe, A., Marengo, M.: The impact of a single drop on a wetted solid surface. Exp. Fluids 22, 463–472 (1997). https://doi.org/10.1007/s003480050073

    Article  Google Scholar 

  • Crowe, C.T., Sommerfeld, M.: Tsuji Y. CRC Press LLC, Multiphase Flow with Droplets and Particles (1997)

    Google Scholar 

  • Fassmann, B.W., Bansmer, S.E., Möller, T.J., Radespiel, R., Hartmann, M.: High velocity impingement of single droplets on a dry smooth surface. Exp. Fluids 54(5), 1516 (2013)

    Article  Google Scholar 

  • Günther, C., Bröder, J., Joos, F.: Influence of pressure on droplet splashing behaviour inside gas turbine compressors during wet compression. ISROMAC (2017)

  • Josserand, C., Thoroddsen, S.: Drop impact on a solid surface. Annu Rev. Fluid Mech. 48, 365–391 (2016). https://doi.org/10.1146/annuarev-fluid-122414-034401

    Article  MathSciNet  MATH  Google Scholar 

  • Li, H., Roisman, I., Tropea, C.: Physics of supercooled large drops (SLD): Literature Review, EXTrime ICing Environment (EXTICE) project, WP2 intermediate report (2009)

  • Li, H.: Drop impact on dry surfaces with phase change (Doctoral dissertation, Tuprints) (2013)

  • Latka, A., et al.: Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys. Rev. Lett. 109,(2012)

  • Mehdizadeh, N.Z., Chandra, S., Mostaghimi, J.: Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J. Fluid Mech. 510, 353–373 (2004)

    Article  Google Scholar 

  • Moreira, A.L.N., Moita, A.S., Panao, M.R.: Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog. Energy Combust. Sci. 36(5), 554–580 (2010)

    Article  Google Scholar 

  • Mundo, C., Sommerfeld, M., Tropea, C.: "Droplet-wall collisions: Experimental studies of the deformation and breakup process". Int. J. Multiphase Flow, vol. 21, no. 2, 151-173 (1995)

    Article  Google Scholar 

  • Pan, K.L., Tseng, K.C., Wang, C.H.: Breakup of a droplet at high velocity impacting a solid surface. Exp. Fluids 48(1), 143–156 (2010)

    Article  Google Scholar 

  • Papadakis, M., Hung, K.E., Vu, G.T., Yeong, H.W., Bidwell, C.S., Breer, M.D., Bencic, T.J.: Experimental investigation of water droplet impingement on airfoils, finite wings, and an S-duct engine inlet. NASA TR 2002–211700 (2002)

  • Papadakis, M., Rachman, A., Wong, S.C., Hung, K.E., Vu, G.T., Bidwell, C.S.: Experimental study of supercooled large droplet impingement effects, DOT/FAA/AR—03/59 report, Office of Aviation Research Washington DC (2003)

  • Rioboo, R., Tropea, C., Marengo, M.: Outcomes from a drop impact on solid surfaces. Atomization Sprays 11, 155–165 (2001)

    Article  Google Scholar 

  • Roisman, I.V., Horvat, K., Tropea, C.: Spray impact: Rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys. of Fluids 18(10), (2006)

  • Sabri, F., Trifu, O., Paraschivoiu, I.: In-flight ice accretion simulation in SLD conditions. AIAA-2007–4282 (2007)

  • Tan, S.C.: A tentative mass loss model for simulating water droplet splash. AIAA-2004–410 (2004)

  • Tan, S.C.: Effects of large droplet dynamics on airfoil impingement characteristics, AIAA-2005–74 (2005)

  • Tan, S.C., Papadakis, M., Miller, D., Bencic, T., Tate, P., Laun, M.C.: Experimental Study of Large Droplet Splashing and Breakup. AIAA-2007–904 (2007)

  • Thoroddsen, S.T., Takehara, K., Etoh, T.G.: Micro-splashing by drop impacts. J. Fluid Mech. 706, 560–570 (2012)

  • Trontin, P., Villedieu, P.: Revisited model for supercooled large droplet impact onto a solid surface. J. Airc. (2016). https://doi.org/10.2514/1.C0340952

  • Trujillo, M.F., Mathews, W.S., Lee, C.F., Peters, J.E.: Modelling and experiment of impingement and atomization of a liquid spray on a wall. Int. J. Engine Res. 1, 87–105 (2000)

  • Wright, W.B.: Validation results for Lewice 3.0. AIAA paper 2005–1243 (2005)

  • Xu, L., Zhang, W., Nagel, S.R.: Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505 (2005). https://doi.org/10.1103/PhysRevLett.94.184505

  • Yarin, A. L., Weiss, D. A.: Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity, J. Fluid Mech. 283, 141-173 (1995)

  • Yarin, A.L.: Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159–192 (2006). https://doi.org/10.1146/annuarev.fluid.38.050304.092144

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was conducted within the framework of the French research program PHYSICE funded by the Direction Générale de l’Aviation Civile (DGAC). Many thanks to Pierre Trontin for supporting the reference data base.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bodoc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodoc, V., Berthoumieu, P. & Déjean, B. Experimental Investigation of Large Droplet Impact with Application to SLD Icing. Microgravity Sci. Technol. 33, 59 (2021). https://doi.org/10.1007/s12217-021-09900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09900-9

Keywords

Navigation