Skip to main content
Log in

Numerical Simulation of Quasi-Static Bubble Formation from a Submerged Orifice by the Axisymmetric VOSET Method

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In order to investigate the dynamics of quasi-static bubble formation from a submerged orifice, this paper developed an axisymmetric VOSET method with continuum surface force (CSF) model which can accurately capture the moving phase interface of gas-liquid flow. Test case shows that numerical results are in good agreement with experimental results from the literature. The effects of gas flow rate, orifice size, surface tension, contact angle, liquid density, and gravitational acceleration on bubble shape, departure time and departure volume are investigated and analyzed. It is found that increase in orifice size, surface tension, and contact angle results in the increase in the capillary force resisting bubble detachment, which leads to larger departure time and departure volume. But there is a critical contact angle, and contact angle has no significance effect on the process of bubble formation and detachment, when it is smaller than the critical value. Buoyancy force promoting bubble detachment increases with the increase of liquid density and gravitational acceleration, which results in smaller departure time and departure volume. Also, the forming process of the neck shape of bubble bottom at the bubble detachment stage is observed, and the results show that the position of the smallest part of the neck approximately equals to the orifice radius Rc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Albadawi, A., Donoghue, D.B., Robinson, A.J., Murray, D.B., Delauré, Y.M.C.: Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. Int. J. Multiphase Flow. 53, 11–28 (2013)

    Article  Google Scholar 

  • Arias, S., Montlaur, A.: Influence of contact angle boundary condition on CFD simulation of T-junction. Microgravity Sci. Technol. 30, 435–443 (2018)

    Article  Google Scholar 

  • Badam, V.K., Buwa, V., Durst, F.: Experimental investigations of regimes of bubble formation on submerged orifices under constant flow condition. Can. J. Chem. Eng. 85, 257–267 (2007)

    Article  Google Scholar 

  • Bitlloch, P., Ruiz, X., Ramírez-Piscina, L., Casademunt, J.: Bubble dynamics in turbulent duct flows: lattice-boltzmann simulations and drop tower experiments. Microgravity Sci. Technol. 30, 525–534 (2018)

    Article  Google Scholar 

  • Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Buwa, V.V., Gerlach, D., Durst, F., Schlücker, E.: Numerical simulations of bubble formation on submerged orifices: Period-1 and period-2 bubbling regimes. Chem. Eng. Sci. 62, 7119–7132 (2007)

    Article  Google Scholar 

  • Chakraborty, I., Biswas, G., Polepalle, S., Ghoshdastidar, P.S.: Bubble formation and dynamics in a quiescent high-density liquid. AICHE J. 61, 3996–4012 (2015)

    Article  Google Scholar 

  • Chakraborty, I., Ray, B., Biswas, G., Durst, F., Sharma, A., Ghoshdastidar, P.S.: Computational investigation on bubble detachment from submerged orifice in quiescent liquid under normal and reduced gravity. Phys. Fluids. 21, 062103 (2009)

    Article  MATH  Google Scholar 

  • Chen, Y., Mertz, R., Kulenovic, R.: Numerical simulation of bubble formation on orifice plates with a moving contact line. Int. J. Multiphase Flow. 35, 66–77 (2009)

    Article  Google Scholar 

  • Das, A.K., Das, P.K., Saha, P.: Formation of bubbles at submerged orifices - experimental investigation and theoretical prediction. Exp. Thermal Fluid Sci. 35, 618–627 (2011)

    Article  Google Scholar 

  • Di Bari, S., Robinson, A.J.: Experimental study of gas injected bubble growth from submerged orifices. Exp. Thermal Fluid Sci. 44, 124–137 (2013)

    Article  Google Scholar 

  • Georgoulas, A., Koukouvinis, P., Gavaises, M., Marengo, M.: Numerical investigation of quasi-static bubble growth and detachment from submerged orifices in isothermal liquid pools: the effect of varying fluid properties and gravity levels. Int. J. Multiphase Flow. 74, 59–78 (2015)

    Article  MathSciNet  Google Scholar 

  • Gerlach, D., Alleborn, N., Buwa, V., Durst, F.: Numerical simulation of periodic bubble formation at a submerged orifice with constant gas flow rate. Chem. Eng. Sci. 62, 2109–2125 (2007)

    Article  Google Scholar 

  • Gerlach, D., Biswas, G., Durst, F., Kolobaric, V.: Quasi-static bubble formation on submerged orifices. Int. J. Heat Mass Transf. 48, 425–438 (2005)

    Article  Google Scholar 

  • Guo, D.Z., Sun, D.L., Li, Z.Y., Tao, W.Q.: Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the VOSET method. Numer. Heat. Transfer A-Appl. 59, 857–881 (2011)

    Article  Google Scholar 

  • Hanafizadeh, P., Eshraghi, J., Kosari, E., Ahmed, W.H.: The effect of gas properties on bubble formation, growth, and detachment. Part. Sci. Technol. 33, 645–651 (2015)

    Article  Google Scholar 

  • Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  • Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., Ahn, H.S.: Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp. Thermal Fluid Sci. 66, 173–196 (2015)

    Article  Google Scholar 

  • Lesage, F.J., Cotton, J.S., Robinson, A.J.: Modelling of quasi-static adiabatic bubble formation, growth and detachment for low bond numbers. Chem. Eng. Sci. 104, 742–754 (2013)

    Article  Google Scholar 

  • Lesage, F.J., Marois, F.: Experimental and numerical analysis of quasi-static bubble size and shape characteristics at detachment. Int. J. Heat Mass Transf. 64, 53–69 (2013)

    Article  Google Scholar 

  • Ma, D., Liu, M., Zu, Y., Tang, C.: Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns. Chem. Eng. Sci. 72, 61–77 (2012)

    Article  Google Scholar 

  • Mirsandi, H., Rajkotwala, A.H., Baltussen, M.W., Peters, E.A.J.F., Kuipers, J.A.M.: Numerical simulation of bubble formation with a moving contact line using local front reconstruction method. Chem. Eng. Sci. 187, 415–431 (2018)

    Article  Google Scholar 

  • Movafaghian, S., Jaua-Marturet, J.A., Mohan, R.S., Shoham, O., Kouba, G.E.: The effects of geometry, fluid properties and pressure on the hydrodynamics of gas-liquid cylindrical cyclone separators. Int. J. Multiphase Flow. 26, 999–1018 (2000)

    Article  MATH  Google Scholar 

  • Munro, T.R., Ban, H.: Flow and heat flux behavior of micro-bubble jet flows observed in thin, twisted-wire, subcooled boiling in microgravity. Microgravity Sci. Technol. 27, 49–60 (2015)

    Article  Google Scholar 

  • Oguz, H.N., Prosperetti, A.: Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257, 111–145 (1993)

    Article  Google Scholar 

  • Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Pang, M.J., Wei, J.J., Yu, B.: Investigation on effect of gravity level on bubble distribution and liquid turbulence modification for horizontal channel bubbly flow. Microgravity Sci. Technol. 29, 313–324 (2017)

    Article  Google Scholar 

  • Shi, D.X., Bi, Q.C., Zhou, R.Q.: Numerical simulation of a falling ferrofluid droplet in a uniform magnetic field by the VOSET method. Numer. Heat. Transfer A-Appl. 66, 144–164 (2014)

    Article  Google Scholar 

  • Simmons, J.A., Sprittles, J.E., Shikhmurzaev, Y.D.: The formation of a bubble from a submerged orifice. Eur. J. Mech. B-Fluid. 53, 24–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, D.L., Tao, W.Q.: A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows. Int. J. Heat Mass Transf. 53, 645–655 (2010)

    Article  MATH  Google Scholar 

  • Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Vafaei, S., Borca-Tasciuc, T., Wen, D.S.: Theoretical and experimental investigation of quasi-steady-state bubble growth on top of submerged stainless steel nozzles. Colloid Surface A. 369, 11–19 (2010)

    Article  Google Scholar 

  • Wang, T., Li, H.X., Li, Y.: Numerical investigation on coaxial coalescence of two gas bubbles. J. Xi'an Jiaotong Univ. 47, 1–6 (2013)

    Google Scholar 

  • Wang, T., Li, H.X., Zhao, J.F.: Three-dimensional numerical simulation of bubble dynamics in microgravity under the influence of nonuniform electric fields. Microgravity Sci. Technol. 28, 133–142 (2016)

    Article  Google Scholar 

  • Wu, K., Li, Z.D., Zhao, J.F., Li, H.X., Li, K.: Partial nucleate pool boiling at low heat flux: preliminary ground test for SOBER-SJ10. Microgravity Sci. Technol. 28, 165–178 (2016)

    Article  Google Scholar 

  • Wu, W.B., Liu, Y.L., Zhang, A.M.: Numerical investigation of 3D bubble growth and detachment. Ocean Eng. 138, 86–104 (2017)

    Article  Google Scholar 

  • Youngs, D.L.: Time-dependent multi-material flow with large fluid distorion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics. Acadimic Press, New York (1982)

    Google Scholar 

  • Zhang, L., Shoji, M.: Aperiodic bubble formation from a submerged orifice. Chem. Eng. Sci. 56, 5371–5381 (2001)

    Article  Google Scholar 

  • Zhang, Y.J., Liu, M.Y., Xu, Y.G., Tang, C.: Three-dimensional volume of fluid simulations on bubble formation and dynamics in bubble columns. Chem. Eng. Sci. 73, 55–78 (2012)

    Article  Google Scholar 

  • Zhang, Y.H., Liu, B., Zhao, J.F., Deng, Y.P., Wei, J.J.: Experimental study of subcooled flow boiling heat transfer on a smooth surface in short-term microgravity. Microgravity Sci. Technol. 30, 793–805 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The present study is supported financially by the Fundamental Research Funds for the Central Universities (2018MS105) and the joint fund between the Chinese Academy of Sciences (CAS) and National Natural Science Foundation of China (NSFC) under the grant of U1738105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Li, HX., Zhao, JF. et al. Numerical Simulation of Quasi-Static Bubble Formation from a Submerged Orifice by the Axisymmetric VOSET Method. Microgravity Sci. Technol. 31, 279–292 (2019). https://doi.org/10.1007/s12217-019-9690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-9690-5

Keywords

Navigation