Skip to main content
Log in

Influence of Contact Angle Boundary Condition on CFD Simulation of T-Junction

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In this work, we study the influence of the contact angle boundary condition on 3D CFD simulations of the bubble generation process occurring in a capillary T-junction. Numerical simulations have been performed with the commercial Computational Fluid Dynamics solver ANSYS Fluent v15.0.7. Experimental results serve as a reference to validate numerical results for four independent parameters: the bubble generation frequency, volume, velocity and length. CFD simulations accurately reproduce experimental results both from qualitative and quantitative points of view. Numerical results are very sensitive to the gas-liquid-wall contact angle boundary conditions, confirming that this is a fundamental parameter to obtain accurate CFD results for simulations of this kind of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Afkhami, S., Zaleski, S., Bussmann, M.: A mesh-dependent model for applying dynamic contact angles to VOF simulations. J. Comput. Phys. 228, 5370–5389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • ANSYS Academic Research: Release 15.0,7, Help System, ANSYS, Inc (2014)

  • Arias, S., González-Cinca, R.: Analysis of the characteristic lengths in the bubble and slug flow regimes generated in a capillary T-junction. Int. J. Multiphase Flow 87, 167–174 (2016)

    Article  Google Scholar 

  • Arias, S., Montlaur, A.: Numerical study and experimental comparison of two-phase flow generation in a T-junction. AIAA J. 55(5), 1565–1574 (2017)

    Article  Google Scholar 

  • Arias, S., Ruiz, X., Ramírez-Piscina, L., Casademunt, J., González-Cinca, R.: Experimental study of a microchannel bubble injector for microgravity applications. Microgravity Sci. Technol. 21, 107–118 (2009)

    Article  Google Scholar 

  • Arias, S., González-Cinca, R., Ruiz, X., Ramírez-Piscina, L., Casademunt, J.: Characterization of the performance of a minibubble generator in conditions relevant to microgravity. Colloids Surf. A Physicochem. Eng. Asp. 365, 52–57 (2010)

    Article  Google Scholar 

  • Arias, S., Legendre, D., González-Cinca, R.: Numerical simulation of bubble generation in a T-junction. Comput. Fluids 56, 49–60 (2012)

    Article  MATH  Google Scholar 

  • Baroud, C.N., Willaime, H.: Multiphase flows in microfluidics. C. R. Phys. 5, 547–555 (2004)

    Article  Google Scholar 

  • Bhunia, A., Pais, S.C., Kamotani, Y., Kim, I.: Bubble formation in a coflow configuration in normal and reduced gravity. AIChE J. 44, 1499–1509 (1998)

    Article  Google Scholar 

  • Brackbill, J.U., Kothe, D., Zemach, C.: A continuum method for modeling of surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Carrera, J., Ruiz, X., Ramírez-Piscina, L., Casademunt, J., Dreyer, M.: Generation of a monodisperse microbubble jet in microgravity. AIAA J. 46(8), 2010–2019 (2008)

    Article  Google Scholar 

  • Di Marco, P., Grassi, W., Memoli, G., Takamasa, T., Tomiyama, A., Hosokawa, S.: Influence of electric field on single gas-bubble growth and detachment in microgravity. Int. J. Multiph. Flows. 29, 559–578 (2003)

    Article  MATH  Google Scholar 

  • Forrester, S.E., Rielly, C.D.: Bubble formation from cylindrical, flat and concave sections exposed to a strong liquid crossflow. Chem. Eng. Sci. 53, 1517–1527 (1998)

    Article  Google Scholar 

  • Guo, Q., Ye, F., Guo, H., Ma, C.F.: Gas/water and heat management of PEM-based fuel cell and electrolyzer systems for space applications. Microgravity Sci. Technol. 29, 49–63 (2017)

    Article  Google Scholar 

  • Hirt, C.W., Brethour, J.M.: Moving contact lines on rough surfaces. In: 4th European Coating Symposium FloSci-Bib17-01 (2001)

  • Huh, C., Scriven, L.E.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35(1), 85–101 (1971)

    Article  Google Scholar 

  • Iacona, E., Herman, C., Chang, S., Liu, Z.: Electric field effect on bubble detachment in reduced gravity environment. Exp. Therm. Fluid Sci. 31, 121–126 (2006)

    Article  Google Scholar 

  • McQuillen, J., Colin, C., Fabre, J.: Ground-based gas-liquid flow research in microgravity conditions: state of knowledge. Space Forums 3, 165–203 (1998)

    Google Scholar 

  • Malekzadeh, S., Roohi, E.: Investigation of different droplet formation regimes in a t-junction microchannel using the VOF technique in openFOAM. Microgravity Sci. Technol. 27, 231–243 (2015)

    Article  Google Scholar 

  • Ostrach, S.: Industrial processes influenced by gravity. NASA CR-182140 c- 21066-G (1988)

  • Pampering, O., Rath, H.J.: Influence of buoyancy on bubble formation at submerged orifices. Chem. Eng. Sci. 50, 3009–3024 (1995)

    Article  Google Scholar 

  • Rezkallah, K.S.: Weber number based flow-pattern maps for liquid-gas flows at microgravity. Int. J. Multiphase Flow 22(6), 1265–1270 (1996)

    Article  Google Scholar 

  • Rosengarten, G., Harvie, D.J.E., Cooper-White, J.: Contact angle effects on microdroplet deformation using CFD. Appl. Math. Model. 30, 1033–1042 (2006)

    Article  MATH  Google Scholar 

  • Schönfeld, F., Hardt, S.: Dynamic contact angles in CFD simulations. Comput. Fluids 38, 757–764 (2009)

    Article  MATH  Google Scholar 

  • Shi, Y., Tang, G.H., Xia, H.H.: Lattice Boltzmann simulation of droplet formation in t-junction and flow focusing devices. Comput. Fluids 90, 155–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Suo, M., Griffith, P.: Two-phase flow in capillary tubes. J. Basic Eng. 86, 576–582 (1964)

    Article  Google Scholar 

  • Yong-Qiang, L., Wen-Hui, C., Ling, L.: Numerical simulation of capillary flow in fan-shaped asymmetric interior corner under microgravity. Microgravity Sci. Technol. 29, 65–79 (2017)

    Article  Google Scholar 

  • Zuber, N., Findlay, J.: Average volumetric concentration in two-phase systems. J. Heat Transf. 87(4), 453–468 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Spanish Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación (Project numbers ESP2016-79196-P and MTM2013-46313-R) and the Generalitat de Catalunya (Grant number 2017-SGR-1278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, S., Montlaur, A. Influence of Contact Angle Boundary Condition on CFD Simulation of T-Junction. Microgravity Sci. Technol. 30, 435–443 (2018). https://doi.org/10.1007/s12217-018-9605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9605-x

Keywords

Navigation