Skip to main content
Log in

Experimental Investigation of Adiabatic Gas-Liquid Flow Regimes and Pressure Drop in Slit Microchannel

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The flow regimes and pressure drop in a slit microchannel with a height of 164 μm and width of 10 mm are studied experimentally. The boundaries between the regimes are precisely determined using the developed procedure. The homogeneous flow model and the separated flow model are considered for determining the frictional pressure drop. Experimental data are compared with theoretical models. For the homogeneous flow model, the Dukler correlation gives good agreement with experimental data with a mean absolute error of 12%. A new correlation, which describes the experimental data with a mean absolute error of 8.1%, is proposed for the homogeneous flow model. For the separated flow model, the Hwang and Kim correlation gives the best agreement with a mean absolute error of 12.8%. The dependence of the pressure drop in the film flows (annular and stratified regimes) on the mass gas quality has been investigated. It is shown that the minimal pressure drop for the film flows is achieved in the stratified regime; thus, it is the most promising for the use in technical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

D :

Diameter, m

D h :

Hydraulic diameter, m

L :

Channel length, m

b :

Channel width, m

h :

Channel height,m

z :

Stream-wise coordinate, m

S :

Cross sectional area, m2

S ch :

Observed microchannel area in, m2

S bf :

Area of liquid film on bottom microchannel wall, m2

S uf :

Area of liquid film on upper microchannel wall, m2

F :

Bubble formation frequency, Hz

\( {U}_{sl}=\frac{Q_l}{b\cdot h} \) :

Superficial liquid velocity, m/s

\( {U}_{sg}=\frac{Q_g}{b\cdot h} \) :

Superficial gas velocity, m/s

g :

Acceleration of gravity, m/s2

P :

Pressure,

G :

Mass flux, kg/m2s

Q :

Volumetric flow rate, m3/s

ρ :

Density, kg/m3

σ :

Surface tension, N/m

μ :

Dynamic viscosity, kg/m ⋅ s

ε :

Roughness, m

\( {\delta}_c=\sqrt{\frac{\sigma }{g\left({\rho}_l-{\rho}_g\right)}} \) :

Capillary constant, m

τ :

Shear stress, kg/m ⋅ s2

\( f=\frac{2{\tau}_w}{\rho {U}^2} \) :

Fanning friction factor

\( {\mathit{\operatorname{Re}}}_l=\frac{G\left(1-x\right){D}_h}{\mu_l} \) :

Liquid Reynolds number

\( {\mathit{\operatorname{Re}}}_g=\frac{GxD_h}{\mu_g} \) :

Gas Reynolds number

\( {\mathit{\operatorname{Re}}}_{lo}=\frac{GD_h}{\mu_l} \) :

Reynolds number of liquid only

\( {\mathit{\operatorname{Re}}}_{go}=\frac{GD_h}{\mu_g} \) :

Reynolds number of gas only

\( {Su}_{go}=\frac{\rho_g\sigma {D}_h}{\mu_g^2} \) :

Suratman number of gas only

\( Eo=\frac{g\left({\rho}_l-{\rho}_g\right){D}_h^2}{\sigma } \) :

Eotvos number

\( {N}_{conf}=\frac{1}{Eo^2}=\sqrt{\frac{\sigma }{g\left({\rho}_l-{\rho}_g\right){D}_h^2}} \) :

Confinement number

\( {We}_{lo}=\frac{G^2{D}_h}{\rho_l\sigma } \) :

Weber number of liquid only

\( {We}_{tp}=\frac{G^2{D}_h}{\rho_{tp}\sigma } \) :

Two-phase Weber number

\( x=\frac{\rho_g{Q}_g}{\rho_g{Q}_g+{\rho}_l{Q}_l} \) :

Gas quality

\( \beta =\frac{U_{sg}}{U_{sg}+{U}_{sl}} \) :

Homogeneous void fraction

\( X=\sqrt{\frac{{\left(\frac{dP}{dL}\right)}_l}{{\left(\frac{dP}{dL}\right)}_g}} \) :

Martinelli parameter

l :

Liquid

g :

Gas

lo :

Liquid only

go :

Gas only

tp :

Two phase

h :

Hydraulic

w :

Wall

sl :

Superficial liquid

sg :

Superficial gas

vv :

Laminar liquid – laminar gas

vt :

Laminar liquid – turbulent gas

tv :

Turbulent liquid – laminar gas

tt :

Turbulent liquid – turbulent gas

pred :

Predicted

exp :

Experimental

References

  • Arias, S., Montlaur, A.: Influence of contact angle boundary condition on CFD simulation of T-junction. Microgravity Sci. Technol. 30(4), 435–443 (2018)

    Article  Google Scholar 

  • Awad, M.M., Muzychka, Y.S.: Effective property models for homogeneous two-phase flows. Exp. Thermal Fluid Sci. 33(1), 106–113 (2008)

    Article  Google Scholar 

  • Bar-Cohen, A.: Gen 3 “embedded” cooling: key enabler for energy efficient data centers. IEEE Trans. Comp. Pack. Man. Technol. 7(8), 1206–1211 (2017)

    Google Scholar 

  • Bar-Cohen, A., Rahim, E.: Modeling and prediction of two-phase microgap channel heat transfer characteristics. Heat Transf. Eng. 30(8), 601–625 (2009)

    Article  Google Scholar 

  • Beattie, D.R.H., Whalley, P.B.: A simple two-phase frictional pressure drop calculation method. Int. J. Multiphase Flow. 8(1), 83–87 (1982)

    Article  Google Scholar 

  • Bekezhanova, V. B., Goncharova, O. N.: Thermocapillary convection with phase transition in the 3D channel in a weak gravity field. Microgravity Sci. Technol. 31(4), 357–376 (2019)

    Article  Google Scholar 

  • Chen, I.Y., Yang, K.S., Wang, C.C.: Two-phase pressure drop of air-water in small horizontal tubes. J. Thermophys. Heat Transf. 15(4), 409–415 (2001)

    Article  Google Scholar 

  • Chinnov, E.A., Ron’shin, F.V., Kabov, O.A.: Regimes of two-phase flow in micro- and minichannels. Thermophys. Aeromech. 22(3), 265–284 (2015)

    Article  Google Scholar 

  • Chinnov, E.A., Ron'shin, F.V., Kabov, O.A.: Two-phase flow patterns in short horizontal rectangular microchannels. Int. J. Multiphase Flow. 80, 57–68 (2016)

    Article  Google Scholar 

  • Chisholm, D.: A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat Mass Transf. 10(12), 1767–1778 (1967)

    Article  Google Scholar 

  • Chung, P.Y., Kawaji, M.: The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. Int. J. Multiphase Flow. 30(7–8), 735–761 (2004)

    Article  Google Scholar 

  • Cicchitti, A., Lombardi, C., Silvestri, M., Soldaini, G., Zavattarelli, R.: Two-Phase Cooling Experiments: Pressure Drop, Heat Transfer and Burnout Measurements Energia Nucl. 7, 407–425 (1960)

  • Dukler, A.E., Wicks III, M., Cleveland, R.G.: Frictional pressure drop in two-phase flow: B. an approach through similarity analysis. AICHE J. 10(1), 44–51 (1964)

    Article  Google Scholar 

  • Gatapova, E.Y., Kabov, O.A., Kuznetsov, V.V., Legros, J.: Evaporating shear-driven liquid film flow in minichannel with local heat source. J. Eng. Thermophys. 13(2), 179–197 (2005)

    Google Scholar 

  • Gerbino, F., Mameli, M., Di Marco, P., Filippeschi, S.: Local void fraction and fluid velocity measurements in a capillary channel with a single optical probe. Interfacial Phenom. Heat Transf. 5(1), 23–42 (2017)

    Article  Google Scholar 

  • Guo, K., Li, H., Feng, Y., Zhao, J., & Wang, T.: Numerical Investigation on Single Bubble and Multiple Bubbles Growth and Heat Transfer During Flow Boiling in A Microchannel Using the VOSET Method. Microgravity Sci. Technol. 31(4), 381–393 (2019)

  • Hwang, Y.W., Kim, M.S.: The pressure drop in microtubes and the correlation development. Int. J. Heat Mass Transf. 49(11–12), 1804–1812 (2006)

    Article  Google Scholar 

  • Iorio, C.S., Kabov, O.A., Legros, J.C.: Thermal patterns in evaporating liquid. Microgravity Sci. Technol. 19(3–4), 27–29 (2007)

    Article  Google Scholar 

  • Jia, J.L., Guo, H., Fang, Y.E., Fang, C., Kabov, O.A.: Effect of parallel channels orientation on two-phase flow and performance of a direct methanol fuel cell. Interfacial Phenom. Heat Transf. 6(3), 157–208 (2018)

    Article  Google Scholar 

  • Kabov, O.A., Legros, J.K., Marchuk, I.V., Sheid, B.: Deformation of the free surface in a moving locally-heated thin liquid layer. Fluid Dyn. 36(3), 521–528 (2001)

    Article  Google Scholar 

  • Kabov, O.A., Scheid, B., Sharina, I.A., Legros, J.C.: Heat transfer and rivulet structures formation in a falling thin liquid film locally heated. Int. J. Therm. Sci. 41(7), 664–672 (2002)

    Article  Google Scholar 

  • Kabova, Y.O., Kuznetsov, V.V., Ohta, H., Kabov, O.A.: Dynamics and evaporation of a thin locally heated liquid film sheared by a vapor flow in a microchannel. Interfacial Phenom. Heat Transf. 5(3), 231–249 (2017)

    Article  Google Scholar 

  • Kim, S.M., Mudawar, I.: Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows. Int. J. Heat Mass Transf. 55(11–12), 3246–3261 (2012)

    Article  Google Scholar 

  • Lee, H.J., Lee, S.Y.: Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights. Int. J. Multiphase Flow. 27(5), 783–796 (2001)

    Article  Google Scholar 

  • Lee, J., Mudawar, I.: Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part II—heat transfer characteristics. Int. J. Heat Mass Transf. 48(5), 941–955 (2005)

    Article  Google Scholar 

  • Li, W., Wu, Z.: A general correlation for adiabatic two-phase pressure drop in micro/mini-channels. Int. J. Heat Mass Transf. 53(13–14), 2732–2739 (2010)

    Article  Google Scholar 

  • Lin, S., Kwok, C.C.K., Li, R.Y., Chen, Z.H., Chen, Z.Y.: Local frictional pressure drop during vaporization of R-12 through capillary tubes. Int. J. Multiphase Flow. 17(1), 95–102 (1991)

    Article  Google Scholar 

  • Lockhart, R.W., Martinelli, R.C.: Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog. 45(1), 39–48 (1949)

    Google Scholar 

  • McAdams, W.H.: Vaporization inside horizontal tubes-II, Benzene oil mixtures. Trans. ASME. 64, 193–200 (1942)

    Google Scholar 

  • Mishima, K., Hibiki, T.: Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int. J. Multiphase Flow. 22(4), 703–712 (1996)

    Article  Google Scholar 

  • Moriyama, K., Inoue, A., Ohira, H.: The thermohydraulic characteristics of two-phase flow in extremely narrow channels (the frictional pressure drop and heat transfer boiling two-phase flow, analytical model). Heat Transf. Japan. Res. 21(8), 838–856 (1992)

  • Nasr, M.H., Green, C.E., Kottke, P.A., Zhang, X., Sarvey, T.E., Joshi, Y.K., Bakir, M.S., Fedorov, A.G.: Flow regimes and convective heat transfer of refrigerant flow boiling in ultra-small clearance microgaps. Int. J. Heat Mass Transf. 108, 1702–1713 (2017)

    Article  Google Scholar 

  • Owens, W. L.: Two-phase pressure gradient. Int. Dev. in heat transfer Part II. ASME, New York, United States (1961)

  • Qu, W., Mudawar, I.: Measurement and prediction of pressure drop in two-phase micro-channel heat sinks. Int. J. Heat Mass Transf. 46(15), 2737–2753 (2003)

    Article  Google Scholar 

  • Ronshin, F., Chinnov, E.: Experimental characterization of two-phase flow patterns in a slit microchannel. Exp. Thermal Fluid Sci. 103, 262–273 (2019)

    Article  Google Scholar 

  • Serizawa, A., Feng, Z., Kawara, Z.: Two-phase flow in microchannels. Exp. Thermal Fluid Sci. 26(6–7), 703–714 (2002)

    Article  Google Scholar 

  • Shah, R. K., London A. L.: Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic Press. 78–138 (1978)

  • Sun, L., Mishima, K.: Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels. Int. J. Multiphase Flow. 35(1), 47–54 (2009)

    Article  Google Scholar 

  • Wang, C.C., Chiang, C.S., Lu, D.C.: Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Exp. Thermal Fluid Sci. 15(4), 395–405 (1997)

    Article  Google Scholar 

  • Yan, Y.Y., Lin, T.F.: Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Int. J. Heat Mass Transf. 41(24), 4183–4194 (1998)

    Article  Google Scholar 

  • Yang, C.Y., Webb, R.L.: Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins. Int. J. Heat Mass Transf. 39(4), 801–809 (1996)

    Article  Google Scholar 

  • Zhang, W., Hibiki, T., Mishima, K.: Correlations of two-phase frictional pressure drop and void fraction in mini-channel. Int. J. Heat Mass Transf. 53(1–3), 453–465 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the grant of the Russian Science Foundation No. 18-19-00407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Ronshin.

Additional information

This article belongs to the Topical Collection: Thirty Years of Microgravity Research - A Topical Collection Dedicated to J. C. Legros

Guest Editor: Valentina Shevtsova

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronshin, F.V., Dementyev, Y.A., Chinnov, E.A. et al. Experimental Investigation of Adiabatic Gas-Liquid Flow Regimes and Pressure Drop in Slit Microchannel. Microgravity Sci. Technol. 31, 693–707 (2019). https://doi.org/10.1007/s12217-019-09747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09747-1

Keywords

Navigation