Skip to main content
Log in

Numerical Study on the Stabilization of a Self-Sustaining Steady-State Premixed Cool Flame

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The unexpected finding of the quasi-steady state cool flame onboard the International Space Station motivated increasing interests to study the dynamic behaviors of cool flames. One key scientific question is how to form and stabilize a self-sustaining steady-state cool flame in a burner with well-defined boundary conditions. This paper numerically studied the stabilization of a self-sustaining steady-state premixed dimethyl ether/O2/N2 cool flame. The dual S-curve response in the perfectly-stirred reactor was first analyzed and the results indicated three ways to form a self-sustaining premixed cool flame: 1) igniting the unburned fresh mixture by decreasing the residence time, 2) igniting the unburned mixture by increasing the temperature of the unburned fresh mixture, and 3) extinguishing an extremely lean or an extremely rich hot flame by decreasing the residence time. Using the counterflow configuration, the proposed three ways were successfully demonstrated by tuning the flow temperature and stretch rate. Moreover, double structured flames, i.e., a leading premixed cool flame front followed by a premixed warm flame, were numerically reported in the counterflow flame configuration. The thermal and species structures of the double flames were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\( {\dot{H}}_{net} \) :

Net heat production rate, J/cm3·s

L :

Separation distance of the two stream exits in the counterflow flame, cm

p :

Pressure, atm

T :

Temperature, K

U :

Velocity, cm/s

x :

Mole fraction

z :

Flame coordinate, cm

ϕ :

Equivalence ratio

ρ :

Gas density, g/cm3

τ :

Residence time, s

ω :

Elementary reaction rate, mole/m3·K

i :

Value of species i

m :

Mixture

max :

Maximum value

r :

Reactor

u :

Unburned

CFE:

Cool flame extinction

CFI:

Cool flame ignition

HFE:

Hot flame extinction

HFI:

Hot flame ignition

References

  • Deng, S., Zhao, P., Zhu, D., Law, C.K.: NTC-affected ignition and low-temperature flames in nonpremixed DME/air counterflow. Combust. Flame. 161(8), 1993–1997 (2014)

    Article  Google Scholar 

  • Deng, S., Han, D., Law, C.K.: Ignition and extinction of strained nonpremixed cool flames at elevated pressures. Combust. Flame. 176, 143–150 (2017)

    Article  Google Scholar 

  • Egolfopoulos, F.: Geometric and radiation effects on steady and unsteady strained laminar flames. Proc. Combust. Inst. 25, 1375–1381 (1994)

    Article  Google Scholar 

  • Farouk, T.I., Dryer, F.L.: Isolated n-heptane droplet combustion in microgravity: “cool flames” – two-stage combustion. Combust. Flame. 161(2), 565–581 (2014)

    Article  Google Scholar 

  • Farouk, T.I., Hicks, M.C., Dryer, F.L.: Multistage oscillatory “ cool flame ” behavior for isolated alkane droplet combustion in elevated pressure microgravity condition. Proc. Combust. Inst. 35(2), 1701–1708 (2015)

    Article  Google Scholar 

  • Farouk, T.I., Dietrich, D., Dryer, F.L.: Three stage cool flame droplet burning behavior of n-alkane droplets at elevated pressure conditions: hot, warm and cool flame. Proc. Combust. Inst. 37(3), 3353–3361 (2019)

    Article  Google Scholar 

  • Glarborg, P., Kee, R.J., Grcar, J.F., Miller, J.A.: PSR: a Fortran Program for Modeling Well-Stirred Reactors (1986)

  • Griffiths, J.F., Inomata, T.: Oscillatory cool flames in the combustion of diethyl ether. J. Chem. Soc. Faraday Trans. 88(88), 3153–3158 (1992)

    Article  Google Scholar 

  • Hajilou, M., Belmont, E.: Characterization of ozone-enhanced propane cool flames at sub-atmospheric pressures. Combust. Flame. 196, 416–423 (2018)

    Article  Google Scholar 

  • Hajilou, M., Ombrello, T., Won, S.H., Belmont, E.: Experimental and numerical characterization of freely propagating ozone-activated dimethyl ether cool flames. Combust. Flame. 176, 326–333 (2017)

    Article  Google Scholar 

  • Ju, Y.: On the propagation limits and speeds of premixed cool flames at elevated pressures. Combust. Flame. 178, 61–69 (2017)

    Article  Google Scholar 

  • Ju, Y., Sun, W., Burke, M.P., Gou, X., Chen, Z.: Multi-timescale modeling of ignition and flame regimes of n-heptane-air mixtures near spark assisted homogeneous charge compression ignition conditions. Proc. Combust. Inst. 33(1), 1245–1251 (2011)

    Article  Google Scholar 

  • Ju, Y., Reuter, C.B., Won, S.H.: Numerical simulations of premixed cool flames of dimethyl ether/oxygen mixtures. Combust. Flame. 162(10), 3580–3588 (2015)

    Article  Google Scholar 

  • Kee, R.J., Rupley, F.M., Miller, J.A.: CHEMKIN-II: a Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics. Sandia National Laboratories (1989)

  • Krisman, A., Hawkes, E.R., Talei, M., Bhagatwala, A., Chen, J.H.: A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions. Proc. Combust. Inst. 36(3), 3567–3575 (2017)

    Article  Google Scholar 

  • Law, C.K.: Combustion Physics. Cambridge university press (2006)

  • Law, C.K., Faeth, G.M.: Opportunities and challenges of combustion in microgravity. Prog. Energy Combust. Sci. 20(1), 65–113 (1994)

    Article  Google Scholar 

  • Law, C.K., Zhao, P.: NTC-affected ignition in nonpremixed counterflow. Combust. Flame. 159(3), 1044–1054 (2012)

    Article  Google Scholar 

  • Lee, M., Fan, Y., Reuter, C.B., Ju, Y., Suzuki, Y.: DME/oxygen wall-stabilized premixed cool flame. Proc. Combust. Inst. 37(2), 1749–1756 (2019)

    Article  Google Scholar 

  • Liang, W., Law, C.K.: Extended flammability limits of n -heptane/air mixtures with cool flames. Combust. Flame. 185, 75–81 (2017)

    Article  Google Scholar 

  • Lin, E., Reuter, C.B., Ju, Y.: Dynamics and burning limits of near-limit hot, warm, and cool diffusion flames of dimethyl ether at elevated pressures. Proc. Combust. Inst. 37(2), 1791–1798 (2019)

    Article  Google Scholar 

  • Liu, B., Zhang, Z., Zhang, H., Zhang, D.: Volatile release and ignition behaviors of single coal particles at different oxygen concentrations under microgravity. Microgravity Sci. Technol. 28(2), 101–108 (2015)

    Article  Google Scholar 

  • Lutz, AE, Kee, R.J., Grcar, J.F., Rupley, F.M.: OPPDIF: a Fortran Program for Computing Opposed-Flow Diffusion Flames. Sandia National Laboratories (1997)

  • Maruta, K., Yoshida, M., Ju, Y., Niioka, T.: Experimental study on methane-air premixed flame extinction at small stretch rates in microgravity. Proc. Combust. Inst. 26(1), 1283–1289 (1996)

    Article  Google Scholar 

  • Naidja, A.: Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems. Prog. Energy Combust. Sci. 29(2), 155–191 (2003)

    Article  Google Scholar 

  • Nayagam, V., Dietrich, D.L., Ferkul, P.V., Hicks, M.C., Williams, F.A.: Can cool flames support quasi-steady alkane droplet burning? Combust. Flame. 159(12), 3583–3588 (2012)

    Article  Google Scholar 

  • Novoselov, A.G., Law, C.K., Mueller, M.E.: Direct numerical simulation of turbulent nonpremixed “cool” flames: applicability of flamelet models. Proc. Combust. Inst. 37(2), 2143–2150 (2019)

    Article  Google Scholar 

  • Reuter, C.B., Sang, H.W., Ju, Y.: Experimental study of the dynamics and structure of self-sustaining premixed cool flames using a counterflow burner. Combust. Flame. 166, 125–132 (2016)

    Article  Google Scholar 

  • Reuter, C.B., Lee, M., Won, S.H., Ju, Y.: Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction. Combust. Flame. 179, 23–32 (2017a)

    Article  Google Scholar 

  • Reuter, C.B., Won, S.H., Ju, Y.: Flame structure and ignition limit of partially premixed cool flames in a counterflow burner. Proc. Combust. Inst. 36(1), 1513–1522 (2017b)

    Article  Google Scholar 

  • Ronney, P.D.: Understanding combustion processes through microgravity research. In: Symposium (International) on Combustion. vol 2. Elsevier, pp 2485–2506 (1998)

  • Ronney, P.D., Wachman, H.Y.: Effect of gravity on laminar premixed gas combustion I: flammability limits and burning velocities. Combust. Flame. 62(2), 107–119 (1985)

    Article  Google Scholar 

  • Shan, R., Lu, T.: Ignition and extinction in perfectly stirred reactors with detailed chemistry. Combust. Flame. 159(6), 2069–2076 (2012)

    Article  Google Scholar 

  • Sun, W., Sang, H.W., Ju, Y.: In situ plasma activated low temperature chemistry and the S -curve transition in DME/oxygen/helium mixture. Combust. Flame. 161(8), 2054–2063 (2014)

    Article  Google Scholar 

  • Takahashi, F., Katta, V.R., Hicks, M.C.: Cool-flame burning and oscillations of envelope diffusion flames in microgravity. Microgravity Sci. Technol. 30(4), 339–351 (2018)

    Article  Google Scholar 

  • Wan, S., Fan, Y., Maruta, K., Suzuki, Y.: Wall chemical effect of metal surfaces on DME/air cool flame in a micro flow reactor. Proc. Combust. Inst. 37(4), 5655–5662 (2019)

    Article  Google Scholar 

  • Won, S.H., Jiang, B., Diévart, P., Sohn, C.H., Ju, Y.: Self-sustaining n -heptane cool diffusion flames activated by ozone. Proc. Combust. Inst. 35(1), 881–888 (2015)

    Article  Google Scholar 

  • Zhang, H., Egolfopoulos, F.N.: Extinction of near-limit premixed flames in microgravity. Proc. Combust. Inst. 28(2), 1875–1882 (2000)

    Article  Google Scholar 

  • Zhang, H., Fan, R., Wang, S., Tian, X., Xu, K., Wan, S., Egolfopoulos, F.N.: Extinction of lean near-limit methane/air flames at elevated pressures under normal- and reduced-gravity. Proc. Combust. Inst. 33(1), 1171–1178 (2011)

    Article  Google Scholar 

  • Zhang, Y., Qiu, X., Li, B., Zhang, H., Li, S.: Extinction studies of near-limit lean premixed syngas/air flames. Int. J. Hydrog. Energy. 38(36), 16453–16462 (2013)

    Article  Google Scholar 

  • Zhang, W., Faqih, M., Gou, X., Chen, Z.: Numerical study on the transient evolution of a premixed cool flame. Combust Flame. 187, 129–136 (2018)

    Article  Google Scholar 

  • Zhao, P., Law, C.K.: The role of global and detailed kinetics in the first-stage ignition delay in NTC-affected phenomena. Combust. Flame. 160(11), 2352–2358 (2013)

    Article  Google Scholar 

  • Zhao, Z., Chaos, M., Kazakov, A., Dryer, F.L.: Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. Int. J. Chem. Kinet. 40(1), 1–18 (2008)

    Article  Google Scholar 

  • Zhao, P., Liang, W., Deng, S., Law, C.K.: Initiation and propagation of laminar premixed cool flames. Fuel. 166, 477–487 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the National Natural Science Foundation of China (NSFC 51706119) as well as the Strategic Pilot Project of the Chinese Academy of Sciences (XDA15012800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, X., Shen, W. et al. Numerical Study on the Stabilization of a Self-Sustaining Steady-State Premixed Cool Flame. Microgravity Sci. Technol. 31, 845–854 (2019). https://doi.org/10.1007/s12217-019-09721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09721-x

Keywords

Navigation