Skip to main content
Log in

Acoustically Induced Flashback in a Staged Swirl-Stabilized Combustor

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper describes a joint experimental and numerical investigation of the interaction between thermoacoustics and flashback mechanisms in a swirled turbulent burner. An academic air/propane combustor terminated by a choked nozzle is operated up to 2.5 bars. Experiments show that the flame can stabilize either within the combustion chamber or flashback inside the injection duct, intermittently or permanently. The present study focuses on the mechanisms leading to flashback: this phenomenon can occur naturally, depending on the swirl level which can be adjusted in the experiment by introducing axial flow through the upstream inlet. It can also be triggered by acoustic waves, either through acoustic forcing or self-excited thermoacoustic instability. Flashback is difficult to study experimentally, but it can be investigated numerically using LES: in a first configuration, the outlet of the chamber is treated as a non-reflecting surface through which harmonic waves can be introduced. In this case, a 20 kPa acoustic forcing is sufficient to trigger permanent flashback after a few cycles. When the LES computational domain includes the choked nozzle used experimentally, no forcing is needed for flashback to occur. Self-excited oscillations reach high levels rapidly, leading to flame flashback, as observed experimentally. These results also suggest a simple method to avoid flashback by using fuel staging, which is then tested successfully in both LES and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. In certain combustors, where the fresh gases are compressed up to high pressures and temperatures, flashback can also occur because of autoignition in the injection system. This case is not considered here, because the low temperature of the fresh charge prevents autoignition in all cases.

References

  1. Krebs, W., Flohr, P., Prade, B., Hoffmann, S.: Combust. Sci. Tech. 174, 99 (2002)

    Article  Google Scholar 

  2. Lieuwen, T.: J. Prop. Power 19(5), 765 (2003)

    Article  Google Scholar 

  3. Lieuwen, T., Yang, V.: in AIAA Prog. in Astronautics and Aeronautics, vol. 210, vol. 210 (2005)

  4. Huang, Y., Yang, V.: Prog. Energy Combust. Sci. 35(4), 293 (2009)

    Article  Google Scholar 

  5. Lewis, B., von Elbe, G.: J. Chem. Phys. 11(2), 75 (1943)

    Article  Google Scholar 

  6. Plee, S., Mellor, A.: Combust. Flame 32, 193 (1978)

    Article  Google Scholar 

  7. Kurdyumov, V., Fernández, E., Linan, A.: Proc. Combust. Inst. 28(2), 1883 (2000)

    Article  Google Scholar 

  8. Kröner, M., Fritz, J., Sattelmayer, T.: J. Eng. Gas Turbines Power 125 (3), 693 (2002)

    Article  Google Scholar 

  9. Keller, J.O., Vaneveld, L., Korschelt, D., Hubbard, G.L., Ghoniem, A.F., Daily, J.W., Oppenheim, A.K.: AIAA J. 20(2), 254 (1982)

    Article  Google Scholar 

  10. Thibaut, D., Candel, S.: Submitted to Combust. Flame (1997)

  11. Lieuwen, T.C.: Unsteady combustor physics Cambridge University Press (2012)

  12. Fritz, J., Kröner, M., Sattelmayer, T.: J. Eng. Gas Turbines Power 126 (2), 276 (2004)

    Article  Google Scholar 

  13. Sommerer, Y., Galley, D., Poinsot, T., Ducruix, S., Lacas, F., Veynante, D.: vol. 5 (2004)

  14. Eichler, C., Sattelmayer, T.: J. Eng. Gas Turbines Power 133(1), 011503 (2011)

    Article  Google Scholar 

  15. Gruber, A., Chen, J., Valiev, D., Law, C.: J. Fluid Mech. 709, 516 (2012)

    Article  Google Scholar 

  16. Thibaut, D., Candel, S.: Combust. Flame 113(1), 53 (1998)

    Article  Google Scholar 

  17. Syred, N., Beer, J.: Combust. Flame 23(2), 143 (1974)

    Article  Google Scholar 

  18. Billant, P., Chomaz, J.M., Huerre, P.: J. Fluid Mech. 376, 183 (1998)

    Article  MathSciNet  Google Scholar 

  19. Kiesewetter, F., Hirsch, C., Fritz, J., Kroner, M., Sattelmayer, T.: . In: ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference (American Society of Mechanical Engineers), pp 293–300 (2003)

  20. Kiesewetter, F., Konle, M., Sattelmayer, T.: J. Eng. Gas Turbines Power 129(4), 929 (2007)

    Article  Google Scholar 

  21. Lovachev, L.: Combust. Flame 27, 125 (1976)

    Article  Google Scholar 

  22. Chomiak, J.: . In: Proc. Combust. Inst., vol. 16 (Elsevier), pp 1665–1673 (1977)

  23. Ashurst, W.T.: Sci, Combust. Tech 112(1), 175 (1996)

    Article  Google Scholar 

  24. Umemura, A., Tomita, K.: Combust. Flame 125(1), 820 (2001)

    Article  Google Scholar 

  25. Ishizuka, S., Murakami, T., Hamasaki, T., Koumura, K., Hasegawa, R.: Combust. Flame 113(4), 542 (1998)

    Article  Google Scholar 

  26. Hasegawa, T., Michikami, S., Nomura, T., Gotoh, D., Sato, T.: Combust. Flame 129(3), 294 (2002)

    Article  Google Scholar 

  27. Hasegawa, T., Nakamichi, R., Nishiki, S.: Combust. Theor. Model. 6(3), 413 (2002)

    Article  MathSciNet  Google Scholar 

  28. Domingo, P., Vervisch, L.: Proc. Combust. Inst. 31(1), 1657 (2007)

    Article  Google Scholar 

  29. Tran, N., Ducruix, S., Schuller, T.: In: 13th AIAA/CEAS Aeroacoustics Conference, Paper No AIAA-2007-3716 (2007)

  30. Tran, N., Ducruix, S., Schuller, T.: Proc. Combust. Inst. 32(2), 2917 (2009)

    Article  Google Scholar 

  31. Scarpato, A., Tran, N., Ducruix, S., Schuller, T.: J. Sound Vib. 331 (2), 276 (2012)

    Article  Google Scholar 

  32. Reichel, T.G., Terhaar, S., Paschereit, O.: . In: Proceeding of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, vol. 4B (American Society of Mechanical Engineers) (2014)

  33. Sattelmayer, T., Mayer, C., Sangl, J.: . In: Proceeding of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, vol. 4A (American Society of Mechanical Engineers (2014)

  34. Brouckaert, J.F., Mersinligil, M., Pau, M.: Proceedings of the ASME Turbo Expo 2008 Power for Land, Sea and Air (2008)

  35. Mersinligil, M., Brouckaert, J.F., Desset, J.: Proceedings of the ASME Turbo Expo 2010 Power for Land, Sea and Air (2010)

  36. Mersinligil, M., Desset, J., Brouckaert, J.F.: Proceedings of the Institution of Mechanical Engineers, Part A. J. Power Energy (2011)

  37. Guin, C.: RTO Meeting proceedings (1999)

  38. Burmberger, S., Sattelmayer, T.: J. Eng. Gas Turb. and Power (2011)

  39. Beér, J.M., Chigier, N.A.: Combustion aerodynamics. (robert e krieger publishing company) (1972)

  40. Noble, D.R., Zhang, Q., Shareef, A., Tootle, J., Meyers, A., Lieuwen, T.: (2006)

  41. Beerer, D., McDonnel, V., Therkelsen, P., Cheng, R.K.: Eng, J. Gas turb and power 136, 031502–1 (2014)

    Article  Google Scholar 

  42. Schönfeld, T., Rudgyard, M.: AIAA J. 37(11), 1378 (1999)

    Article  Google Scholar 

  43. Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.U., Krebs, W., Prade, B., Kaufmann, P., Veynante, D.: Combust. Flame 137(4), 489 (2004)

    Article  Google Scholar 

  44. Colin, O., Rudgyard, M.: J. Comput. Phys. 162(2), 338 (2000)

    Article  MathSciNet  Google Scholar 

  45. Poinsot, T., Lele, S.: J. Comput. Phys. 101(1), 104 (1992). doi:10.1016/0021-9991(92)90046-2

    Article  MathSciNet  Google Scholar 

  46. Granet, V., Vermorel, O., Leonard, T., Gicquel, L., Poinsot, T.: AIAA J. 48(10), 2348 (2010)

    Article  Google Scholar 

  47. Nicoud, F., Baya Toda, H., Cabrit, O., Bose, S., Lee, J.: Phys. Fluids 23(8), 085106 (2011). doi:10.1063/1.3623274. http://link.aip.org/link/?PHF/23/085106/1

    Article  Google Scholar 

  48. Charlette, F., Meneveau, C., Veynante, D.: Combust. Flame 131, 159 (2002)

    Article  Google Scholar 

  49. Lapeyre, C.J.: Numerical study of ame stability, stabilization and noise in a swirl-stabilized combustor under choked conditions. Ph.D. thesis, INP Toulouse (2015)

  50. Tsien, H.S.: SIAM J. Appl. Math. 6, 188 (1951)

    MathSciNet  Google Scholar 

  51. Kitoh, O.: J. Fluid Mech. 225, 445 (1991)

    Article  Google Scholar 

  52. Ishizuka, S.: Prog. Energy Combust. Sci. 28(6), 477 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has received funding from the ANR DISCERN program, grant ANR-11-BS09-0015 of the French Agence Nationale de la Recherche. It was also supported by the European Union Seventh Framework Program (FP7/2007-2013) in the RECORD project under grant agreement no 312444. It was granted access to the HPC resources of CINES, CCRT and IDRIS under the allocation x20142b5031 made by GENCI (Grand Equipement National de Calcul Intensif).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin J. Lapeyre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapeyre, C.J., Mazur, M., Scouflaire, P. et al. Acoustically Induced Flashback in a Staged Swirl-Stabilized Combustor. Flow Turbulence Combust 98, 265–282 (2017). https://doi.org/10.1007/s10494-016-9745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9745-2

Keywords

Navigation