Skip to main content
Log in

Thermocapillary Bubble Migration at High Reynolds and Marangoni Numbers: 3D Numerical Study

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Thermocapillary motion of initially spherical bubbles due to the constant temperature gradient in a liquid bounded medium is simulated numerically for low, intermediate, high Reynolds and Marangoni numbers using a three dimensional model. The volume of fluid (VOF) method was used to track the liquid/gas interface utilizing a geometric reconstruction scheme based on the piece-wise linear interface calculation (PLIC) method of Ansys-Fluent (2011) to capture the bubble interface. The simulation results are in good agreement with the earlier experimental observations, and the migration velocity of the bubble is greatly influenced by the temperature gradient which thrusts the bubble from cold to hot regime. The results indicate that the scaled velocity of bubbles decreases with an increase of the Marangoni number, which agrees with the results of previous space experiments. Thermal Marangoni number (MaT) of single bubble migrating in the zero gravity condition ranged from 106 to 904620, exceeding that in the previous reported experiments and numerical data that was limited to 10,000. In addition, an expression for predicting the scaled velocity of the bubble has been developed based on the obtained data in the present numerical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alhendal, Y., Turan, A.: Thermocapillary bubble dynamics in a 2d axis swirl domain. Heat Mass Transf. 51, 529–542 (2015)

    Article  Google Scholar 

  • Alhendal, Y., Turan, A.: Microgravity Sci. Technol. 28, 639 (2016). https://doi.org/10.1007/s12217-016-9521-x

    Article  Google Scholar 

  • Alhendal, Y., Turan, A., Aly, W.I.A.: Vof simulation of Marangoni flow of gas bubbles in 2d-axisymmetric column. Procedia Comput. Sci. 1, 673–680 (2010)

    Article  Google Scholar 

  • Alhendal, Y., Turan, A., Hollingsworth, P.: Thermocapillary simulation of single bubble dynamics in zero gravity. Acta Astronaut. 88, 108–115 (2013)

    Article  Google Scholar 

  • Alhendal, Y., Turan, A., Al-mazidi, M.: Thermocapillary bubble flow and coalescence in a rotating cylinder: a 3D study. Acta Astronaut. 117, 484–496 (2015)

    Article  Google Scholar 

  • Ansys-Fluent: ANSYS Fluent User’s Guide. ANSYS, Inc. (2011)

  • Balasubramaniam, R., Lavery, J.E.: Numerical simulation of thermocapillary bubble migration under microgravity for large Reynolds and Marangoni numbers. Numer. Heat Transf. A 16(2), 175–187 (1989)

    Article  Google Scholar 

  • Balasubramaniam, R., Lacy, C.E, Wozniak, G.: Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity. Phys. Fluids 8(4), 872880 (1996)

    Article  Google Scholar 

  • Chen, J.C., Lee, Y.T.: Effect of surface deformation on thermocapillary bubble migration. AIAA J. 30(4), 993–998 (1992)

    Article  Google Scholar 

  • Colin, C., Riou, X., Fabre, J: Bubble coalescence in gas–liquid flow at microgravity conditions. Microgravity Sci. Technol. 20(3), 243–246 (2008)

    Article  Google Scholar 

  • Hadland, P.H., Balasubramaniam, R., Wozniak, G., Subramanian, R S: Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity. Exp. Fluids 26(3), 240–248 (1999)

    Article  Google Scholar 

  • Kang, Q., Cui, H.L., Duan, L.: On-board experimental study of bubble thermocapillary migration in a recoverable satellite. Microgravity Sci. Technol. 20(2), 67–71 (2008)

    Article  Google Scholar 

  • Larkin, B.K.: Thermocapillary flow around hemispherical bubble. AICHEJ 16, 101–107 (1970)

    Article  Google Scholar 

  • Ma, X.J.: Numerical simulation and experiments on liquid drops in a vertical temperature gradient in a liquid of nearly the same density. PhD thesis, Clarkson University, Potsdam, New York (1998)

  • Nas, S., Tryggvason, G.: Computational investigation of the thermal migration of bubbles and drops. In: Proceedings of the ASME Winter Annual Meeting (AMD-174/FED-175), pp 71–83 (1993)

  • Oliver, D.L.R., De Witt, K.J.: Transient motion of a gas bubble in a thermal gradient in low gravity. J. Colloid Interface Sci. 164, 263–268 (1994)

    Article  Google Scholar 

  • O’Shaughnessy, S.M., Robinson, A.J.: Numerical investigation of bubble induced marangoni convection: some aspects of bubble geometry. Microgravity Sci. Technol. 20(3), 319–325 (2008)

    Article  MathSciNet  Google Scholar 

  • Radulescu, C., Robinson, A.J.: The influence of gravity and confinement on marangoni flow and heat transfer around a bubble in a cavity: a numerical study. Microgravity Sci. Technol. 20(3), 253–259 (2008)

    Article  Google Scholar 

  • Shankar, N., Subramanian, R.S.: The stokes motion of a gas bubble due to interfacial tension gradients at low to moderate Marangoni numbers. J. Colloid Interface Sci. 123(2), 512–522 (1988)

    Article  Google Scholar 

  • Subramanian, R.S., Balasubramaniam, R.: The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press, London (2001)

    MATH  Google Scholar 

  • Subramanian, R.S., Balasubramaniam, R., Wozniak, G.: Fluid mechanics of bubbles and drops. In: Physics of Fluids in Microgravity, pp 149–177. Gordon & Breach, Amsterdam (2001)

  • Szymczyk, J.A., Siekmann, J.: Numerical calculation of the thermocapillary motion of a bubble under microgravity. Chem. Eng. Commun. 69(1), 129–147 (1988)

    Article  Google Scholar 

  • Thompson, R.L., Dewitt, K.J., Labus, T. L.: Marangoni bubble motion phenomenon in zero gravity. Chem. Eng. Commun. 5, 299–314 (1980)

    Article  Google Scholar 

  • Treuner, M., Galindo, V., Gerbeth, G., Langbein, D., Rath, H.J.: Thermocapillary bubble migration at high Reynolds and Marangoni numbers under low gravity. J. Colloid Interface Sci. 179, 114–127 (1996)

    Article  Google Scholar 

  • Welch, S.W.J.: Transient thermocapillary migration of deformable bubbles. J. Colloid Interface Sci. 208, 500–508 (1998)

    Article  Google Scholar 

  • Wölk, G., Dreyer, M., Rath, H.J.: Flow patterns in small diameter vertical non-circular channels. Int. J. Multiphase Flow 26, 1037–1061 (2000)

    Article  MATH  Google Scholar 

  • Xie, J.-C., Lin, H., Zhang, P., Liu, F., Hu, W.-R.: Experimental investigation on thermocapillary drop migration at large Marangoni number in reduced gravity. J. Colloid Interface Sci. 285, 737–743 (2005)

    Article  Google Scholar 

  • Young, N.O., Goldstein, J.S., Block, M. J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350–356 (1959)

    Article  MATH  Google Scholar 

  • Zhao, J-F., Li, Z-D., Li, H-X., Li, J.: Thermocapillary migration of deformable bubbles at moderate to large Marangoni number in microgravity. Microgravity Sci. Technol. 22, 295–303 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousuf Alhendal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhendal, Y., Turan, A., Kalendar, A. et al. Thermocapillary Bubble Migration at High Reynolds and Marangoni Numbers: 3D Numerical Study. Microgravity Sci. Technol. 30, 561–569 (2018). https://doi.org/10.1007/s12217-018-9643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9643-4

Keywords

Navigation