Skip to main content

Advertisement

Log in

Estimates of Liquid Species Diffusivities in N-Propanol/Glycerol Mixture Droplets Burning in Reduced Gravity

  • ORIGINAL PAPER
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Results from International Space Station experiments on combustion of n-propanol/glycerol droplets are reported. The initial n-propanol mass fraction was 0.95 and droplets had initial diameters in the 2 – 5 mm range. Some droplets were fiber supported while others were free floating, and the environment was either an oxygen/nitrogen mixture at 1 atm or an oxygen/helium mixture at pressures of 1 and 3 atm. The droplets burned in a multi-stage manner where n-propanol was preferentially evaporated during the early stages of combustion. The resulting buildup of glycerol in the liquid at the droplet surface led to sudden droplet heating and flame contraction. The experimental data are evaluated to provide burning rates, radiometer outputs, and droplet diameters as functions of time. These data are used to calculate effective liquid species diffusivities, D, using asymptotic theory. The D values can be substantially larger than molecular diffusivities in some cases, indicative of the presence of strong convective mixing. It was found that support fibers can decrease D values and that high burning rates can substantially increase D. These variations are attributed to changes in droplet internal flow patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abramzon, B., Sirignano, W.A.: Droplet Vaporization Model for Spray Combustion Calculations. Int. J. Heat Mass Transfer 32(9), 1605–1618 (1989). doi:10.1016/0017-9310(89)90043-4

    Article  Google Scholar 

  • Aggarwal, S.K., Peng, F.: A review of droplet dynamics and vaporization modeling for engineering calculations. J. Eng. Gas Turbines Power 117(3), 453–461 (1995). doi:10.1115/1.2814117

    Article  Google Scholar 

  • Aharon, I.: Hydrodynamic stability and combustion experiments with two component miscible droplets in reduced gravity, Ph.D Dessertation. University of California, Davis (1996)

    Google Scholar 

  • Aharon, I., Shaw, B.D.: Estimates of liquid species diffusivities from experiments on reduced-gravity combustion of heptane–hexadecane droplets. Combust Flame 113(4), 507–518 (1998). doi:10.1016/S0010-2180(97)00242-3

    Article  Google Scholar 

  • Aharon, I., Tam, V.K., Shaw, B.D.: Combustion of Submillimeter Heptane/Methanol and Heptane/Ethanol Droplets in Reduced Gravity. J. Combustion 2013, 6 (2013). doi:10.1155/2013/154202

    Article  Google Scholar 

  • Bohon, M.D., Metzger, B.A., Linak, W.P., King, C.J., Roberts, W.L.: Glycerol combustion and emissions. Proc. Combust. Inst. 33(2), 2717–2724 (2011). doi:10.1016/j.proci.2010.06.154

    Article  Google Scholar 

  • Bryden, M.D., Brenner, H.: Mass-transfer enhancement via chaotic laminar flow within a droplet. J. Fluid Mech. 379, 319–331 (1999). doi:10.1017/S0022112098003395

    Article  MATH  Google Scholar 

  • Cabrera, J.L.O.: locpol: Kernel local polynomial regression. R package version 0.6-0 ed. (2012)

  • Dee, V., Shaw, B.D.: Combustion of propanol–glycerol mixture droplets in reduced gravity. Int. J. Heat Mass Transfer 47(22), 4857–4867 (2004). doi:10.1016/j.ijheatmasstransfer.2004.05.025

    Article  Google Scholar 

  • Delplanque, J.P., Rangel, R.H., Sirignano, W.A.: Liquid-Waste Incineration in a Parallel-Stream Configuration: Effect of Auxiliary Fuel. In: Dynamics of Deflagrations and Reactive Systems: Heterogeneous Combustion. Progress in Astronautics and Aeronautics, pp. 164-186. American Institute of Aeronautics and Astronautics (1991)

  • Dietrich, D.L., Ferkul, P.V., Bryg, V.M., Nayagam, V., Hicks, M.C., Williams, F.A., Dryer, F.L., Shaw, B.D., Choi, M.Y., Avedisian, C.T.: Detailed Results from the Flame Extinguishment Experiment (FLEX) – March 2009 to December 2010. NASA/TP-2013-216046 (2013)

  • Dietrich, D.L., Haggard, J.B. Jr, Dryer, F.L., Nayagam, V., Shaw, B.D., Williams, F.A.: Droplet combustion experiments in spacelab. In: presented at the Twenty-Sixth International Symposium on Combustion, vol. 1, pp 1201–1207. The Combustion Institute, Pittsburgh (1996)

  • Dwyer, H., Shringi, D., Shaw, B.: A simulation of a fiber-supported droplet. Computational Fluid Dynamics Journal 13(3), 357–368 (2004)

    Google Scholar 

  • Dwyer, H.A.: Calculations of droplet dynamics in high temperature environments. Prog. Energy Combust. Sci. 15(2), 131–158 (1989). doi:10.1016/0360-1285(89)90013-0

    Article  MathSciNet  Google Scholar 

  • Dwyer, H.A., Aharon, I., Shaw, B.D., Niamand, H.: Surface tension influences on methanol droplet vaproiation in the presence of water. Symposium (International) on Combustion 26(1), 1613–1619 (1996). doi: 10.1016/S0082-0784(96)80384-5

    Article  Google Scholar 

  • Dwyer, H.A., Shaw, B.D., Niazmand, H.: Droplet/flame interactions including surface tension influences. Symposium (International) on Combustion 27(2), 1951–1957 (1998). doi:10.1016/S0082-0784(98)80039-8

    Article  Google Scholar 

  • Faeth, G.M.: Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 3(4), 191–224 (1977). doi:10.1016/0360-1285(77)90012-0

    Article  Google Scholar 

  • Faeth, G.M.: Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 9(1–2), 1–76 (1983). doi: 10.1016/0360-1285(83)90005-9

    Article  Google Scholar 

  • Fan, J., Gijbels, I.: Data-Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation. J. R. Stat. Soc. Ser. B Methodol. 57(2), 371–394 (1995). doi:10.2307/2345968

    MATH  MathSciNet  Google Scholar 

  • Farouk, T., Dryer, F.L.: Microgravity droplet combustion: effect of tethering fiber on burning rate and flame structure. Combustion Theory and Modelling 15(4), 487–515 (2011). doi:10.1080/13647830.2010.547601

    Article  MATH  Google Scholar 

  • Ghata, N., Shaw, B.D.: Computational modeling of the effects of support fibers on evaporation of fiber-supported droplets in reduced gravity. Int. J. Heat Mass Transfer 77(0), 22–36 (2014a). doi:10.1016/j.ijheatmasstransfer.2014.04.074

    Article  Google Scholar 

  • Ghata, N., Shaw, B.D.: Computational modeling of unsupported and fiber-supported n-heptane droplet combustion in reduced gravity: a study of fiber effects. Combust. Sci. Technol. 187(1–2), 83–102 (2014b). doi: 10.1080/00102202.2014.971950

    Google Scholar 

  • Godsave, G.A.E.: Studies of the combustion of drops in a fuel spray—the burning of single drops of fuel. Symposium (International) on Combustion 4(1), 818–830 (1953). doi:10.1016/S0082-0784(53)80107-4

    Article  Google Scholar 

  • Hall, A.R., Diederichsen, J.: An experimental study of the burning of single drops of fuel in air at pressures up to twenty atmospheres. Symposium (International) on Combustion 4(1), 837–846 (1953). doi: 10.1016/S0082-0784(53)80109-8

    Article  Google Scholar 

  • Hanson, S.P., Beér, J.M., Sarofim, A.F.: Non-equilibrium effects in the vaporization of multicomponent fuel droplets. Symposium (International) on Combustion 19(1), 1029–1036 (1982). doi:10.1016/S0082-0784(82)80279-8

    Article  Google Scholar 

  • Hothorn, T., Everitt, B.S.: A handbook of statistical analyses using R (2014)

  • Kasa, I.: A circle fitting procedure and its error analysis. IEEE Trans. Instrum. Meas. IM-25(1), 8–14 (1976). doi:10.1109/TIM.1976.6312298

    Article  Google Scholar 

  • Kuo, K.K.: Principles of combustion. Willey, New York (1986)

    Google Scholar 

  • Law, C.K.: Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci. 8(3), 171–201 (1982). doi:10.1016/0360-1285(82)90011-9

    Article  Google Scholar 

  • Megaridis, C.M.: Liquid-phase variable property effects in multicomponent droplet convective evaporation. Combust. Sci. Technol. 92(4-6), 291–311 (1993). doi:10.1080/00102209308907676

  • Niazmand, H., Shaw, B.D., Dwyer, H.A.: Effects of Marangoni Convection on Transient Droplet Evaporation at Elevated Pressures and With Negligible Buoyancy. In: paper 93-083 presented at 1993 Fall Meeting of the Western States Section of the Combustion Institute, Menlo Park, CA (1993a)

  • Niazmand, H., Shaw, B.D., Dwyer, H.A.: Effects of Marangoni Convection on Transient Droplet Evaporation in Reduced Gravity. In: paper presented at the 206th National Meeting and Exposition Program of the American Chemical Society, Chicago, IL, August 22-27 (1993b)

  • Niazmand, H., Shaw, B.D., Dwyer, H.A., Aharon, I.: Effects of marangoni convection on transient droplet evaporation. Combust. Sci. Technol. 103(1–6), 219–233 (1994). doi:10.1080/00102209408907696

  • Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). doi:10.1109/TSMC.1979.4310076

    Article  MathSciNet  Google Scholar 

  • R Core Team: R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria (2014)

  • Randolph, A.L., Makino, A., Law, C.K.: Liquid-phase diffusional resistance in multicomponent droplet gasification. Symposium (International) on Combustion 21(1), 601–608 (1986). doi:10.1016/S0082-0784(88)80290-X

    Article  Google Scholar 

  • Reid, R.C., Prausnitz, J.M., Poling, B.E.: The properties of gases and liquids fourth Ed (1987)

  • Shaw, B.D.: ISS droplet combustion experiments - uncertainties in droplet sizes and burning rates. Microgravity Sci. Technol. 26(2), 89–99 (2014). doi:10.1007/s12217-014-9377-x

    Article  Google Scholar 

  • Shaw, B.D., Aharon, I., Lenhart, D., Dietrich, D.L., Williams, F.A.: Spacelab and drop-tower experiments on combustion of methanol/dodecanol and ethanol/dodecanol mixture droplets in reduced gravity. Combust. Sci. Technol. 167(1), 29–56 (2001a). doi:10.1080/00102200108952176

    Article  Google Scholar 

  • Shaw, B.D., Aharon, I., Leonard, D., Dietrich, D.L., Williams, F.A.: Spacelab and Drop Tower Experiments on Reduced Gravity Combustion of Methanol/Dodecanol and Ethanol/Dodecanol Mixture Droplets. In: paper 00S-32 presented at the 2000 Spring Meeting of the Western States Section of the Combustion Institute, Colorado School of Mines, Golden CO, March 13-14 (2000a)

  • Shaw, B.D., Chen, A.G.: Observation of flows inside droplets undergoing combustion in reduced gravity. Microgravity Sci. Technol. 10(3), 136–143 (1997)

    Google Scholar 

  • Shaw, B.D., Clark, B.D., Wang, D.: Spacelab experiments on combustion of heptane/hexadecane droplets. AIAA J. 39(12), 2327–2335 (2001b). doi:10.2514/2.1238

    Article  Google Scholar 

  • Shaw, B.D., Clark, B.D., Wang, D.F.: Spacelab Experiments on Combustion of Heptane-Hexadecane Droplets. In: paper 00S-30 presented at the 2000 Spring Meeting of the Western States Section of the Combustion Institute, Colorado School of Mines, Golden, CO, March 13-14 (2000b)

  • Shaw, B.D., Williams, F.A.: Theory of influence of a low-volatility, soluble impurity on spherically-symmetric combustion of fuel droplets. Int. J. Heat Mass Transfer 33(2), 301–317 (1990). doi:10.1016/0017-9310(90)90100-9

    Article  Google Scholar 

  • Shaw, B.D., Yu, F.: Erratum to: ISS Droplet Combustion Experiments - Uncertainties in Droplet Sizes and Burning Rates. Microgravity Sci. Technol. 26(2), 101–101 (2014). doi:10.1007/s12217-014-9379-8

    Article  Google Scholar 

  • Shringi, D., Dwyer, H.A., Shaw, B.D.: Influences of support fibers on vaporizing fuel droplets. Comput. Fluids 77(0), 66–75 (2013a). doi:10.1016/j.compfluid.2013.02.005

    Article  Google Scholar 

  • Shringi, D., Dwyer, H.A., Shaw, B.D.: Numerical studies of flows over liquid droplets on cylindrical fibers. Comput. Fluids 77(0), 1–11 (2013b). doi:10.1016/j.compfluid.2013.02.011

    Article  Google Scholar 

  • Sirignano, W.A.: Fuel droplet vaporization and spray combustion theory. Prog. Energy Combust. Sci. 9(4), 291–322 (1983). doi:10.1016/0360-1285(83)90011-4

    Article  Google Scholar 

  • Sirignano, W.A.: Fluid dynamics and transport of droplets and sprays. Cambridge University Press (1999)

  • Spalding, D.B.: The combustion of liquid fuels. Symposium (International) on Combustion 4(1), 847–864 (1953). doi:10.1016/S0082-0784(53)80110-4

    Article  Google Scholar 

  • Talley, D.G., Yao, S.C.: A semi-empirical approach to thermal and composition transients inside vaporizing fuel droplets. Symposium (International) on Combustion 21(1), 609–616 (1986). doi:10.1016/S0082-0784(88)80291-1

    Article  Google Scholar 

  • Wang, C.H., Liu, X.Q., Law, C.K.: Combustion and microexplosion of freely falling multicomponent droplets. Combust Flame 56(2), 175–197 (1984). doi:10.1016/0010-2180(84)90036-1

    Article  Google Scholar 

  • Ward, T., Homsy, G.M.: Electrohydrodynamically driven chaotic mixing in a translating drop. Phys. Fluids 13(12), 3521–3525 (2001). doi:10.1063/1.1416190

    Article  MathSciNet  Google Scholar 

  • Williams, A.: Combustion of droplets of liquid fuels: A review. Combust Flame 21(1), 1–31 (1973). doi:10.1016/0010-2180(73)90002-3

    Article  Google Scholar 

  • Williams, A.: Combustion of liquid fuel sprays. Butterworth-Heinemann, London (1990)

    Google Scholar 

  • Williams, F.A.: Combustion Theory, 2nd edn. Benjamin/Cummings, Menlo Park (1985)

  • Yu, F., Shaw, B.D.: Interpretation of backlit droplet images from ISS droplet combustion experiments. Gravitational and Space Research 2(1), 82–93 (2014)

    Google Scholar 

Download references

Acknowledgments

The support of the NASA Microgravity Combustion Program is gratefully acknowledged. The Technical Monitor for this research was Doctor D. L. Dietrich. We appreciate discussions with C. T. Avedisian, M. Y. Choi, D. L. Dietrich, F. L. Dryer, M. Hicks, V. Nayagam, and F. A. Williams. We also express our sincere gratitude to the management, engineering, and operations teams at NASA and Zin Technology, Inc., the ISS astronauts who participated in the experiments, and S. A. Langberg for assisting with image analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Shaw.

Appendix A: Viscous Decay Time Estimates

Appendix A: Viscous Decay Time Estimates

The time t v is the time for droplet internal circulation to decay such that liquid-phase species convective transport is negligible. Estimates of the importance of liquid-phase convection on species transport in droplets may be made by calculating the liquid-phase Peclet number Pe = Ud/D, where U is a characteristic liquid velocity, d the droplet diameter, and D a characteristic liquid-phase species diffusivity. For U = 10 mm/s, d = 1 mm, and D = 5 x 10 3 mm 2/s, Pe = 2,000, suggesting that convective species transport will be important if the characteristic droplet lifetime t burn is large relative to the characteristic time t c= d/U for convective transport to occur in a droplet, i.e., if a droplet exists long enough for internal convection to have an effect. If convective effects are to be negligible, the ratio Ud/K, which represents the ratio of a characteristic liquid convection time to a characteristic droplet lifetime, should be small relative to unity. For d = 1 mm, and K = 0.5 mm 2/s, it is required that U << 1 mm/s if liquid phase convective species transport is to be negligible.

Making Ud/K << 1 by decreasing U is possible if internal flow fields are allowed to decay prior to ignition. Fluid velocity decay rates inside of a droplet may be estimated by assuming that the rate of change of kinetic energy E of the fluid inside the droplet is balanced by the viscous dissipation rate ΦV, where Φ is a volume-average dissipation function and V the droplet volume. Let U be an average velocity associated with the largest length scale L such that E =ρU 2V/2, where ρ is the droplet density. It will also be assumed that Φ=μ (U/L) 2, where μ is the liquid dynamic viscosity and the ratio U/L characterizes droplet internal velocity gradients, leading to the differential equation

$$ \frac{\mathrm{d}(\mathrm{U}^{2})}{\text{dt}}= - \frac{2\upnu}{\mathrm{L}^{2}}\mathrm{U}^{2} $$
(A1)

Equation A1 is to be solved subject to the initial condition U = U at t = 0. The solution to Eq. A1 is

$$ \mathrm{U} = \mathrm{U}_{0}\mathrm{e}^{-\upnu\mathrm{t}/\mathrm{L}} $$
(A2)

The equation

$$ \text{Ud}/\mathrm{K} = \upbeta , $$
(A3)

may be used as a criterion to specify when droplet internal velocities are sufficiently small, where β is a constant which is small relative to unity. When Ud/K >β, droplet internal convection is not negligible, while if Ud/K <β internal convection should be negligible. By inserting Eq. A2 into Eq. A3, the dissipation time t v, which is the time for droplet internal velocities to achieve values such that Eq. 3 is satisfied, can be calculated (see Eq. A4).

$$ \mathrm{t}_{\mathrm{v}} =\frac{\mathrm{L}^{2}}{\upnu}\ln \left( {\frac{\mathrm{U}_{\mathrm{o}} \mathrm{L}}{\mathrm{K}\upbeta}} \right) $$
(A4)

Based upon experimental results on decay rates of peak tracer particle velocities in droplets that were not ignited (Shaw and Chen 1997), L is appropriately characterized by assuming it to be the initial droplet radius, which is reasonable on physical grounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vang, C.L., Shaw, B.D. Estimates of Liquid Species Diffusivities in N-Propanol/Glycerol Mixture Droplets Burning in Reduced Gravity. Microgravity Sci. Technol. 27, 281–295 (2015). https://doi.org/10.1007/s12217-015-9455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9455-8

Keywords

Navigation