Skip to main content
Log in

A Compact Atom Interferometer for Future Space Missions

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Atom interferometry represents a quantum leap in the technology for the ultra-precise monitoring of accelerations and rotations and, therefore, for the science that relies on these quantities. These sensors evolved from a new kind of optics based on matter-waves rather than light-waves and might result in an advancement of the fundamental detection limits by several orders of magnitude. This paper describes the current status of the Space Atom Interferometer project (SAI), funded by the European Space Agency. In a multi-pronged approach, SAI aims to investigate both experimentally and theoretically the various aspects of placing atom interferometers in space: the equipment needs, the realistically expected performance limits and potential scientific applications in a micro-gravity environment considering all aspects of quantum, relativistic and metrological sciences. A drop-tower compatible atom interferometry acceleration sensor prototype has been designed, and the manufacturing of its subsystems has been started. A compact modular laser system for cooling and trapping rubidium atoms has been assembled. A compact Raman laser module, featuring outstandingly low phase noise, has been realized. Possible schemes to implement coherent atomic sources in the atom interferometer have been experimentally demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baillard, X., Gauguet, A., Bize, S., Lemonde, P., Laurent, P., Clairon, A., Rosenbusch, P.: Interference-filter-stabilized external-cavity diode lasers. Opt. Coom. 266, 609–613 (2006)

    Article  Google Scholar 

  • Bertoldi, A., Lamporesi, G., Cacciapuoti, L., De Angelis, M., Fattori, M., Petelski, T., Peters, A., Prevedelli, M., Stuhler, J., Tino, G.M.: Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G. Eur. Phys. J. D. 40, 271 (2006)

    Article  Google Scholar 

  • Bresson, A., Bidel, Y., Bouyer, P., Leone, B., Murphy, E., Silvestrin, P.: Quantum mechanics for space applications. Appl. Phys. B 84, 545–550 (2006)

    Article  Google Scholar 

  • Cheinet, P., Canuel, B., Santos, F.P.D., Gauguet, A., Leduc, F., Landragin, A.: Measurement of the sensitivity function in time-domain atomic interferometer. IEEE Trans. Instrum. Meas. 57, 1141 (2008)

    Article  Google Scholar 

  • Clément, J.F., Brantut, J.P., Robert de Saint Vincent, M., Varoquaux, G., Nyman, R.A., Aspect, A., Bourdel, T., Bouyer, P.: All-optical runaway evaporation to Bose-Einstein condensation. Phys. Rev. A 79, 61406 (2009)

    Article  Google Scholar 

  • Dieckmann, K., Spreeuw, R.J.C., Weidemüller, M., Walraven, J.T.M.: Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58, 3891 (1998)

    Article  Google Scholar 

  • Dimopoulos, S., Graham, P., Hogan, J., Kasevich, M.: Testing general relativity with atom interferometer. Phys. Rev. Lett. 98, 111102 (2007)

    Article  Google Scholar 

  • Dimopoulos, S., Graham, P.W., Hogan, J.M., Kasevich, M.A., Rajendran, S.: Atomic gravitational wave interferometric sensor. Phys. Rev. D 78, 122002 (2008)

    Article  Google Scholar 

  • Dimopoulos, S., Graham, P.W., Hogan, J.M., Kasevich, M.A., Rajendran, S.: Gravitational wave detection with atom interferometry. Phys. Lett. B 678, 37–40 (2009)

    Article  Google Scholar 

  • Ferrari, G., Poli, N., Sorrentino, F., Tino, G.M.: Long-lived Bloch oscillations with Bosonic Sr atoms and application to gravity measurement at the micrometer scale. Phys. Rev. Lett. 97, 060402 (2006)

    Article  Google Scholar 

  • Fixler, J.B., Foster, G.T., McGuirk, J.M., Kasevich, M.: Atom interferometer measurement of the Newtonian constant of gravity. Science 315, 74 (2007)

    Article  Google Scholar 

  • Fray, S., Alvarez Diez, C., Hänsch, T.W., Weitz, M.: Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principles. Phys. Rev. Lett. 93, 240404 (2004)

    Article  Google Scholar 

  • Gustavson, T.L., Bouyer, P., Kasevich, M.: Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046 (1997)

    Article  Google Scholar 

  • Gustavson, T.L., Landragin, A., Kasevich, M.: Rotation sensing with a dual atom-interferometer Sagnac gyroscope. Class. Quantum Gravity 17, 2385 (2000)

    Article  MATH  Google Scholar 

  • Kasevich, M., Chu, S.: Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B 54, 321 (1992)

    Article  Google Scholar 

  • Lamporesi, G., Bertoldi, A., Cacciapuoti, L., Prevedelli, M., Tino, G.M.: Determination of the Newtonian gravitational constant using atom interferometry. Phys. Rev. Lett. 100, 050801 (2007)

    Article  Google Scholar 

  • McGuirk, J.M., Foster, G.T., Fixler, J.B., Snadden, M.J., Kasevich, M.A.: Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65, 033608 (2002)

    Article  Google Scholar 

  • Müller, H., Chiow, S.W., Herrmann, S., Chu, S., Chung, K.-Y.: Atom interferometry tests of the isotropy of post-Newtonian gravity. Phys. Rev. Lett. 100, 031101 (2008)

    Article  Google Scholar 

  • Peters, A., Chung, K.Y., Chu, S.: Measurement of gravitational acceleration by dropping atoms. Nature 400, 849 (1999)

    Article  Google Scholar 

  • Peters, A., Chung, K.Y., Chu, S.: High-precision gravity measurements using atom interferometry. Metrologia 38, 25 (2001)

    Article  Google Scholar 

  • Snadden, M.J., McGuirk, J.M., Bouyer, P., Haritos, K.G., Kasevich, M.A.: Measurement of Earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett. 81, 971 (1998)

    Article  Google Scholar 

  • Tino, G.M.: 2001: a relativistic spacetime odyssey. In: Ciufolini, I., Dominici, D., Lusanna, L. (eds.) High Precision Gravity Measurements by Atom Interferometry—Proceedings of JH Workshop, Firenze 2001. World Scientific (2003)

  • Tino, G.M., Vetrano, F.: Is it possible to detect gravitational waves with atom interferometers? Class. Quantum Gravity 24, 2167–2177 (2007a)

    Article  MATH  Google Scholar 

  • Tino, G.M., et al.: Atom interferometers and optical atomic clocks: new quantum sensors for fundamental physics experiments in space. Nucl. Phys. B Proc. Suppl. 166, 159–165 (2007b)

    Article  Google Scholar 

  • Turyshev, S.G., Israelsson, U.E., Shao, M., Yu, N., Kusenko, A., Wright, E.L., Everitt, C.W.F., Kasevich, M.A., Lipa, J.A., Mester, J.C., Reasenberg, R.D., Walsworth, R.L., Ashby, N., Gould, H., Paik, H.-J.: Space-based research in fundamental physics and quantum technologies. Int. J. Mod. Phys. D 16, 1879 (2007)

    Article  Google Scholar 

  • van Zoest, T.,Gaaloul, N., Singh, Y.,Ahlers, H.,Herr, W., Seidel, S.T., Ertmer,W., Rasel, E., Eckart, M.,Kajari, E., Arnold, S., Nandi, G., Schleich, W.P., Walser, R., Vogel, A., Sengstock, K., Bongs, K., Lewoczko-Adamczyk, W., Schiemangk, M., Schuldt, T., Peters, A., Könemann, T., Müntinga, H., Lämmerzahl,C., Dittus, H., Steinmetz, T., Hänsch, T.W., Reichel, J.: Bose–Einstein Condensation in Microgravity Science, vol. 328, p. 1540 (2010)

  • Vogel, A., Schmidt, M., Sengstock, K., Bongs, K., Lewoczko, W., Schuldt, T., Peters, A., Van Zoest, T., Ertmer, W., Rasel, E., Steinmetz, T., Reichel, J., Könemann, T., Brinkmann, W., Göklü, E., Lämmerzahl, C., Dittus, H.J., Nandi, G., Schleich, W.P., Walser, R.: Bose-Einstein condensates in microgravity. Appl. Phys. B 84(4), 663–671 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Maria Tino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorrentino, F., Bongs, K., Bouyer, P. et al. A Compact Atom Interferometer for Future Space Missions. Microgravity Sci. Technol. 22, 551–561 (2010). https://doi.org/10.1007/s12217-010-9240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-010-9240-7

Keywords

Navigation