Technology and Developments for the Random Positioning Machine, RPM

  • A. G. BorstEmail author
  • Jack J. W. A. van Loon
Open Access
Original Article


A Random Positioning Machine (RPM) is a laboratory instrument to provide continuous random change in orientation relative to the gravity vector of an accommodated (biological) experiment. The use of the RPM can generate effects comparable to the effects of true microgravity when the changes in direction are faster than the object’s response time to gravity. Thus, relatively responsive living objects, like plants but also other systems, are excellent candidates to be studied on RPMs. In this paper the working principle, technology and control modes will be explained and an overview of the previously used and available experiment systems will be presented. Current and future developments like a microscope facility or fluid handling systems on the RPM and the option to provide partial gravity control modes simulating for instance Mars or Moon gravity will be discussed.


Random positioning machine 2D 3D clinostat Simulated microgravity Microweight Hypogravity 


  1. Brillouet, C., Brinckmann, E., Stavros, E.L.: An overview of the operation and results of the Biorack experiments on the IML-1 mission. In: Mattok, C. (ed.) Biorack on Spacelab IML-1. SP-1162. ESA Publication Div. ESTEC, Noordwijk (1995)Google Scholar
  2. Friedrich, U.L., Joop, O., Pütz, C., Willich, G.: The slow rotating centrifuge microscope NIZEMI–a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science. J. Biotechnol. 47(2–3), 225–38 (1996), 27 JuneCrossRefGoogle Scholar
  3. Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M.: Changes in plant growth processes under microgravity conditions simulated by a three-dimentional clinostat. Bot. Mag. 105, 53–70 (1992)CrossRefGoogle Scholar
  4. Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M., Buchen, B.: Evaluation of threedimentional clinostat as a simulator of weightlessness. Planta 203, 187–197 (1997)CrossRefGoogle Scholar
  5. Kraft, T.F.B., van Loon, J.J.W.A., Kiss, J.Z.: Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta 211(3), 415–422 (2000)CrossRefGoogle Scholar
  6. Mesland, D.A.: Novel ground-based facilities for research in the effects of weight. ESA Microgravity News 9, 5–10 (1996)Google Scholar
  7. Mesland, D., Brillouet, C., et al.: SP-1091. In: Longdon, N., David, V. (eds.) Biorack on Spacelab D-1. ESA Publication Div. ESTEC, Noorwijk (1987)Google Scholar
  8. Murakami, S., Yamada, M.: Architecture of statocytes and chloroplasts under the microgravity environment. Jap. Soc. Biol. Sci. Space 2(4), 301 (1988)Google Scholar
  9. van Loon, J.J.W.A.: The ground controlled late access biological research facility. J. Grav. Phys. 11(1), 57–65 (2004)Google Scholar
  10. van Loon, J.J.W.A.: Some history and the use of Random Positioning Machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007)CrossRefGoogle Scholar
  11. van Loon, J.J.W.A., Veldhuijzen, J.P., Kiss, J., Wood, C., vd Ende, H., Guntemann, A., Jones, D., de Jong, H., Wubbels, R.: Microgravity research starts on the ground! Apparatusses for long term ground based hypo- and hypergravity studies. Proc. 2nd European Symp. on the Utilisation of the International Space Station, ESTEC, pp. 415–419. Noordwijk, The Netherlands, 16–18 November 1998. ESA SP-433 (1999)Google Scholar
  12. von Sachs, F.G.J.R.: Ueber Ausschliessung der geotropischen und heliotroposchen Krümmungen wärend des Wachsthums. Würzburger Arbeiten 2, 209–225 (1879)Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Dutch SpaceLeidenThe Netherlands
  2. 2.Dutch Experiment Support Center (DESC), Dept. Oral Cell BiologyACTA Vrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations