Skip to main content
Log in

Generalized Cartesian decomposition and numerical radius inequalities

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Let \({\mathbb {T}} = \{ \lambda \in {\mathbb {C}}: \mid \lambda \mid = 1\}. \) Every linear operator T on a complex Hilbert space \({\mathcal {H}}\) can be decomposed as

$$\begin{aligned} T=\frac{T+\lambda T^*}{2}+ i \frac{T-\lambda T^*}{2i} \,\, \, (\lambda \in {\mathbb {T}}), \end{aligned}$$

designated as the generalized Cartesian decomposition of T. Using the generalized Cartesian decomposition we obtain several lower and upper bounds for the numerical radius of bounded linear operators which refine the existing bounds. We prove that if T is a bounded linear operator on \({\mathcal {H}},\) then

$$\begin{aligned} w(T)\ge & {} \frac{1}{2} \left\| T+ \frac{\lambda +\mu }{2}T^* \right\| , \,\,\text {for all } \lambda ,\,\mu \in {\mathbb {T}}. \end{aligned}$$

This improves the existing bounds \(w(T)\ge \frac{1}{2}\Vert T\Vert \), \(w(T)\ge \Vert Re(T)\Vert \), \(w(T)\ge \Vert Im(T)\Vert \) and so \(w^2(T)\ge \frac{1}{4} \Vert T^*T+TT^*\Vert ,\) where Re(T) and Im(T) denote the the real part and the imaginary part of T, respectively. Further, using a lower bound for the numerical radius of a bounded linear operator, we develop upper bounds for the numerical radius of the commutator of operators which generalize and improve on the existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Omar, A., Kittaneh, F.: A generalization of the numerical radius. Linear Algebra Appl. 569, 323–334 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bag, S., Bhunia, P., Paul, K.: Bounds of numerical radius of bounded linear operators using \(t\)-Aluthge transform. Math. Inequal. Appl. 23(3), 991–1004 (2020)

    MathSciNet  Google Scholar 

  3. Bhatia, R., Kittaneh, F.: Norm inequalities for positive operators. Lett. Math. Phys. 43, 225–231 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bhunia, P., Paul, K., Sen, A.: Numerical radius inequalities of sectorial matrices. Ann. Funct. Anal. 14, 66 (2023). https://doi.org/10.1007/s43034-023-00288-8

    Article  MathSciNet  Google Scholar 

  5. Bhunia, P., Dragomir, S.S., Moslehian, M.S., Paul, K.: Lectures on Numerical Radius Inequalities. Infosys Science Foundation Series in Mathematical Sciences. Springer, Cham (2022)

    Google Scholar 

  6. Bhunia, P., Paul, K.: Some improvements of numerical radius inequalities of operators and operator matrices. Linear Multilinear Algebra 70(10), 1995–2013 (2022)

    Article  MathSciNet  Google Scholar 

  7. Bhunia, P., Feki, K., Paul, K.: Generalized \(A\)-numerical radius of operators and related inequalities. Bull. Iran. Math. Soc. 48(6), 3883–3907 (2022)

    Article  MathSciNet  Google Scholar 

  8. Bhunia, P., Paul, K.: Development of inequalities and characterization of equality conditions for the numerical radius. Linear Algebra Appl. 630, 306–315 (2021)

    Article  MathSciNet  Google Scholar 

  9. Bhunia, P., Paul, K.: Refinements of norm and numerical radius inequalities. Rocky Mt. J. Math. 51(6), 1953–1965 (2021)

    Article  MathSciNet  Google Scholar 

  10. Bhunia, P., Paul, K.: Proper improvement of well-known numerical radius inequalities and their applications. Results Math. 76(4), 177 (2021)

    Article  MathSciNet  Google Scholar 

  11. Bhunia, P., Bag, S., Nayak, R.K., Paul, K.: Estimations of zeros of a polynomial using numerical radius inequalities. Kyungpook Math. J. 61(4), 845–858 (2021)

    MathSciNet  Google Scholar 

  12. Bhunia, P., Bag, S., Paul, K.: Numerical radius inequalities and its applications in estimation of zeros of polynomials. Linear Algebra Appl. 573, 166–177 (2019)

    Article  MathSciNet  Google Scholar 

  13. Dragomir, S.S.: Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces. Linear Algebra Appl. 419, 256–264 (2006)

    Article  MathSciNet  Google Scholar 

  14. Gustafson, K.E., Rao, D.K.M.: Numerical Range. The Field of Values of Linear Operators andMatrices. Universitext. Springer, New York (1997)

    Google Scholar 

  15. Hadad, M.E., Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. II. Stud. Math. 182(2), 133–140 (2007)

    Article  MathSciNet  Google Scholar 

  16. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  17. Hirzallah, O., Kittaneh, F.: Numerical radius inequalities for several operators. Math. Scand. 114(1), 110–119 (2014)

    Article  MathSciNet  Google Scholar 

  18. Hirzallah, O., Kittaneh, F., Shebrawi, K.: Numerical radius inequalities for \(2\times 2\) operator matrices. Stud. Math. 210, 99–115 (2012)

    Article  Google Scholar 

  19. Johnson, C.R., Zhang, F.: An operator inequality and matrix normality. Linear Algebra Appl. 240, 105–110 (1996)

    Article  MathSciNet  Google Scholar 

  20. Kittaneh, F., Moradi, H.R., Sababheh, M.: Sharper bounds for the numerical radius. Linear Multilinear Algebra (2023). https://doi.org/10.1080/03081087.2023.2177248

    Article  Google Scholar 

  21. Kittaneh, F., Moslehian, M.S., Yamazaki, T.: Cartesian decomposition and numerical radius inequalities. Linear Algebra Appl. 471, 46–53 (2015)

    Article  MathSciNet  Google Scholar 

  22. Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. Stud. Math. 168(1), 73–80 (2005)

    Article  MathSciNet  Google Scholar 

  23. Kittaneh, F.: Numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Stud. Math. 158(1), 11–17 (2003)

    Article  MathSciNet  Google Scholar 

  24. Sain, D., Bhunia, P., Bhanja, A., Paul, K.: On a new norm on \({\cal{B}}({\cal{H}})\) and its applications to numerical radius inequalities. Ann. Funct. Anal. 12(4), 51 (2021)

    Article  MathSciNet  Google Scholar 

  25. Sheikhhosseini, A., Khosravi, M., Sababheh, M.: The weighted numerical radius. Ann. Funct. Anal. 13(1), 3 (2022)

    Article  MathSciNet  Google Scholar 

  26. Simon, B.: Trace Ideals and Their Applications. Cambridge University Press, Cambridge (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kallol Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dr. Pintu Bhunia would like to thank SERB, Govt. of India for the financial support in the form of National Post Doctoral Fellowship (N-PDF, File No. PDF/2022/000325) under the mentorship of Professor Apoorva Khare. Anirban Sen would like to thank CSIR, Govt. of India for the financial support in the form of senior Research Fellowship under the mentorship of Professor Kallol Paul.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, P., Sen, A. & Paul, K. Generalized Cartesian decomposition and numerical radius inequalities. Rend. Circ. Mat. Palermo, II. Ser 73, 887–897 (2024). https://doi.org/10.1007/s12215-023-00958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-023-00958-5

Keywords

Mathematics Subject Classification

Navigation