Skip to main content
Log in

Numerical radius inequalities of sectorial matrices

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

We obtain several upper and lower bounds for the numerical radius of sectorial matrices. We also develop several numerical radius inequalities of the sum, product and commutator of sectorial matrices. The inequalities obtained here are sharper than the existing related inequalities for general matrices. Among many other results we prove that if A is an \(n\times n\) complex matrix with the numerical range W(A) satisfying \(W(A)\subseteq \{re^{\pm i\theta }~:~\theta _1\le \theta \le \theta _2\},\) where \(r>0\) and \(\theta _1,\theta _2\in \left[ 0,\pi /2\right] ,\) then

$$\begin{aligned}{} & {} \mathrm{(i)}\quad w(A) \ge \frac{csc\gamma }{2}\Vert A\Vert + \frac{csc\gamma }{2}\left| \Vert \Im (A)\Vert -\Vert \Re (A)\Vert \right| ,\,\,\text {and}\\{} & {} \mathrm{(ii)}\quad w^2(A) \ge \frac{csc^2\gamma }{4}\Vert AA^*+A^*A\Vert + \frac{csc^2\gamma }{2}\left| \Vert \Im (A)\Vert ^2-\Vert \Re (A)\Vert ^2\right| , \end{aligned}$$

where \(\gamma =\max \{\theta _2,\pi /2-\theta _1\}\). We also prove that if AB are sectorial matrices with sectorial index \(\gamma \in [0,\pi /2)\) and they are double commuting, then \(w(AB)\le \left( 1+\sin ^2\gamma \right) w(A)w(B).\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability Statement

Authors declare that data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abu Sammour, S., Kittaneh, F., Sababheh, M.: A geometric approach to numerical radius inequalities. Linear Algebra Appl. 652, 1–17 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bag, S., Bhunia, P., Paul, K.: Bounds of numerical radius of bounded linear operators using \(t\)-Aluthge transform. Math. Inequal. Appl. 23(3), 991–1004 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Bedrani, Y., Kittaneh, F., Sababheh, M.: Numerical radii of accretive matrices. Linear Multilinear Algebra 69(5), 957–970 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bedrani, Y., Kittaneh, F., Sababheh, M.: From positive to accretive matrices. Positivity 25(4), 1601–1629 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhunia, P., Paul, K.: New upper bounds for the numerical radius of Hilbert space operators. Bull. Sci. Math. 167, 102959 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhunia, P., Paul, K.: Development of inequalities and characterization of equality conditions for the numerical radius. Linear Algebra Appl. 630, 306–315 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhunia, P., Paul, K.: Furtherance of numerical radius inequalities of Hilbert space operators. Arch. Math. (Basel) 117(5), 537–546 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhunia, P., Paul, K.: Refinements of norm and numerical radius inequalities. Rocky Mt. J. Math. 51(6), 1953–1965 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhunia, P., Paul, K.: Proper improvement of well-known numerical radius inequalities and their applications. Results Math. 76(4), 177 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhunia, P., Paul, K., Nayak, R.K.: Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices. Math. Inequal. Appl. 24(1), 167–183 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Bhunia, P., Dragomir, S.S., Moslehian, M.S., Paul, K.: Lectures on Numerical Radius Inequalities. Infosys Science Foundation Series in Mathematical Sciences. Springer, Cham (2022). (ISBN: 978-3-031-13669-6; 978-3-031-13670-2)

    Google Scholar 

  12. Drury, S.: Principal powers of matrices with positive definite real part. Linear Multilinear Algebra 63, 296–301 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fong, C.-K., Holbrook, J.A.R.: Unitarily invariant operator norms. Can. J. Math. 35, 274–299 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garling, D.J.H., Tomczak-Jaegermann, N.: The cotype and uniform convexity of unitary ideals. Isr. J. Math. 45, 175–197 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gustafson, K.E., Rao, D.K.M.: Numerical Range. The Field of Values of Linear Operators and Matrices. Springer, New York (1997)

    Google Scholar 

  16. Hirzallah, O., Kittaneh, F.: Numerical radius inequalities for several operators. Math. Scand. 114(1), 110–119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1986)

    Google Scholar 

  18. Kittaneh, F.: A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Stud. Math. 158(1), 11–17 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kittaneh, F.: Numerical radius inequalities for Hilbert spaces operators. Stud. Math. 168, 73–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Masser, D.W., Neumann, M.: On the square roots of strictly quasiaccretive complex matrices. Linear Algebra Appl. 28, 135–140 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mirman, B.A.: The numerical range of a linear operator, and its norm. Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal. Vyp. 10, 51–55 (1968). (Russian)

    MathSciNet  Google Scholar 

  22. Najafi, H.: Some numerical radius inequality for several operators. Linear Algebra Appl. 588, 489–496 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Omidvar, M.E., Moradi, H.R.: Better bounds on the numerical radii of Hilbert space operators. Linear Algebra Appl. 604, 265–277 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Taylor, A.E.: Introduction to Functional Analysis. Wiley, New York (1958)

    MATH  Google Scholar 

Download references

Acknowledgements

Dr. Pintu Bhunia would like to thank SERB, Govt. of India for the financial support in the form of National Post Doctoral Fellowship (N-PDF, File No. PDF/2022/000325) under the mentorship of Professor Apoorva Khare. Mr. Anirban Sen would like to thank CSIR, Govt. of India for the financial support in the form of Senior Research Fellowship under the mentorship of Professor Kallol Paul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kallol Paul.

Additional information

Communicated by Ilya Spitkovsky.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, P., Paul, K. & Sen, A. Numerical radius inequalities of sectorial matrices. Ann. Funct. Anal. 14, 66 (2023). https://doi.org/10.1007/s43034-023-00288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-023-00288-8

Keywords

Mathematics Subject Classification

Navigation