Skip to main content
Log in

Central Weyl involutions on Fano–Mukai fourfolds of genus 10

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

It is known that every Fano–Mukai fourfold X of genus 10 is acted upon by an involution \(\tau \) which comes from the center of the Weyl group of the simple algebraic group of type \(\textrm{G}_2\), see Prokhorov and Zaidenberg (Eur J Math 4(3):1197–1263 2018, Eur J Math 8:561–572, 2022). This involution is uniquely defined up to conjugation in the group \({\text {{Aut}}}(X)\). In this note we describe the set of fixed points of \(\tau \) and the surface scroll swept out by the \(\tau \)-invariant lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The upper index \(\textrm{sr}\) in \(\Omega ^{\textrm{sr}}\) stands for “subregular”.

  2. Given two algebraic cycles XY on a smooth variety W, we write \(X\cdot Y\) for the scheme-theoretic intersection of X and Y, while \(X\cap Y\) stands for the reduced intersection of subvarieties. By abuse of notation, in the case where X and Y are cycles of complementary dimensions, \(X\cdot Y\) can also stand for the intersection number; in such cases, the meaning is clear from the context.

  3. Alternatively, under the assumption that \(E_1=E_2\) it can be shown that \(s|_{{\tilde{\Pi }}}:{\tilde{\Pi }}\rightarrow \Pi \) sends some pair \((p_1,p_2)\) of distinct points \(p_i\in {\tilde{E}}_i\cap {\tilde{r}}\), \(i=1,2\) on the same ruling \({\tilde{r}}\) of \({\tilde{\Pi }}\) to the same point of E. Indeed, \(\iota :{\tilde{r}}\mapsto (p_1,p_2)\) embeds C in \(E_1\times E_2\), and \(s|_{E_1\cup E_2}\) induces a morphism \(\phi :E_1\times E_2\rightarrow E\times E\). The curve \(\phi \circ \iota (C)\) on \(E\times E\) intersects the diagonal \(\delta \) of \(E\times E\), which proves our claim. However, we know already that \(r=s({\tilde{r}})\) is a ruling of \(\Pi \) and \(s|_{{\tilde{r}}}:{\tilde{r}}\rightarrow r\) is an isomorphism. This yields the desired contradiction.

  4. By Lemma 2.2 any cubic cone S on V verifies this assumption. Hence, so does as well the general cubic scroll on V; see also Corollary 2.9 for a more precise statement.

  5. Cf. also [22, Lemma 2.11(ii)–(iii)] for a particular case where S is a cubic cone.

  6. Notice that \({\tilde{\gamma }}_S\ne {\tilde{E}}_i\) for a general \(S\in {\mathscr {S}}_1\), \(i=1,2\). Indeed, otherwise \(E_i\subset A_S\cap \tau (A_S)\) for any \(S\in {\mathscr {S}}_1\) contrary to Proposition 1.3(l).

  7. Cf. also [6, Theorem 4.5].

References

  1. Adams, J., He, X.: Lifting of elements of Weyl groups. J. Algebra 485, 142–165 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alzati, A., Re, R.: Remarks on the normal bundles of generic rational curves. Ann. Univ. Ferrara Sez. VII Sci. Mat. 63–2, 211–220 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedetti, V., Manivel, L.: On the automorphisms of hyperplane sections of generalized Grassmannians. Transform. Groups (2022). https://doi.org/10.1007/s00031-022-09757-1

    Article  Google Scholar 

  4. Bernardi, A.: Normal Bundle of rational Curves and the Waring’s Problem. Tesi di Dottorato. Università degli studi di Firenze, Facoltà di Matematica “Ulisse Dini” (2011). https://web.math.unifi.it/users/ottavian/tesi/2011PHDTHESISBernardi.pdf

  5. Bernardi, A.: Apolar ideal and normal bundle of rational curves. arXiv:1203.4972 (2012)

  6. Bernardi, A.: Normal bundle of rational curves and Waring decomposition. J. Algebra 400, 123–141 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coskun, I., Riedl, E.: Normal bundles of rational curves in projective space. Math. Z. 288, 803–827 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dedieu, T., Manivel, L.: On the automorphisms of Mukai varieties. Math. Z. 300, 3577–3621 (2022). https://doi.org/10.1007/s00209-021-02965-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Demailly, J.-P.: Théorie de Hodge \(L_2 \) et théorèmes d’annulation. In: Bertin, J., Demailly, J.-P., Illusie, L., Peters, C. (eds.) Introduction à la théorie de Hodge. Panoramas et synthèses, vol. 3, pp. 3–112. Société Mathématique de France, Marseille (1996)

    Google Scholar 

  10. Dieudonné, J.: La géométrie des groupes classiques. Springer, Berlin (1955)

    MATH  Google Scholar 

  11. Edge, W.L.: The Theory of Ruled Surfaces. Cambridge University Press, Cambridge (1931)

    MATH  Google Scholar 

  12. Fujita, T.: On the hyperplane section principle of Lefschetz. J. Math. Soc. Jpn. 32, 153–159 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harris, J.: Algebraic Geometry. A First Course. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)

    Google Scholar 

  14. Hironaka, H.: On the arithmetic genera and the effective genera of algebraic curves. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 30(2), 177–95 (1957)

    MathSciNet  MATH  Google Scholar 

  15. Iskovskikh, V.A.: Fano threefolds. I. Izv. Akad. Nauk SSSR Ser. Mat. 41(3), 516–562 (1977). (in Russian)

    MathSciNet  MATH  Google Scholar 

  16. Kapustka, M., Ranestad, K.: Vector bundles on Fano varieties of genus ten. Math. Ann. 356(2), 439–467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuznetsov, A., Prokhorov, Y., Shramov, C.: Hilbert schemes of lines and conics and automorphism groups of Fano threefolds. Jpn. J. Math. 13(1), 109–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mukai, Sh.: Biregular classification of Fano \(3\)-folds and Fano manifolds of coindex \(3\). Proc. Nat. Acad. Sci. USA 86(9), 3000–3002 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Procesi, C.: Lie Groups: An Approach Through Invariants and Representations. Universitext, Springer (2006)

    MATH  Google Scholar 

  20. Prokhorov, Yu., Zaidenberg, M.: Fano–Mukai fourfolds of genus \(10\) as compactifications of \(\textbf{C} ^4\). Eur. J. Math. 4(3), 1197–1263 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Prokhorov, Yu., Zaidenberg, M.: Fano–Mukai fourfolds of genus \(10\) and their automorphism groups. Eur. J. Math. 8, 561–572 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Prokhorov, Yu., Zaidenberg. M.: Affine cones over Fano–Mukai fourfolds of genus 10 are flexible. In: Dedieu, Th., Flamini, F., Fontanari, C., Galati, C., Pardini, R. (eds.) The Art of Doing Algebraic Geometry. Trends in Mathematics. A Special Volume Dedicated to Ciro Ciliberto’s 70th Birthday, pp. 363–383. Birkhäuser, Cham (2023). https://doi.org/10.1007/978-3-031-11938-5

  23. Sacchiero, G.: Fibrati normali di curvi razionali dello spazio proiettivo. Ann. Univ. Ferrara Sez. VII Sci. Mat. 26, 33–40 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. tom Dieck,T.: Transformation groups and representation theory. In: Lecture Notes in Mathematics, vol. 766. Springer, Berlin (1979)

Download references

Acknowledgements

This paper is based on joint articles [20,21,22] of Yuri Prokhorov and the author. We are grateful to Yuri Prokhorov for useful discussions; the ideas of several proofs are due to him. Our thanks also due to Ciro Ciliberto for his kind assistance, and especially for producing several amazing examples of singular surface scrolls. We are grateful to the anonymous referee, whose comments were relevant and particularly helpful in avoiding inaccuracies, clarifying arguments and improving style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Zaidenberg.

Additional information

In memory of Jean-Pierre Demailly.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaidenberg, M. Central Weyl involutions on Fano–Mukai fourfolds of genus 10. Rend. Circ. Mat. Palermo, II. Ser 72, 3277–3303 (2023). https://doi.org/10.1007/s12215-023-00936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-023-00936-x

Keywords

Mathematics Subject Classification

Navigation