Skip to main content

Advertisement

Log in

Exponential stability of the transmission wave equation with a distributed delay term in the boundary damping

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

We consider a system of transmission of the wave equation with Neumann feedback control that contains a distributed delay term and that acts on the exterior boundary. We prove under some assumptions that the solutions decay exponentially in an appropriate energy space. To establish this result, we introduce a suitable energy function and use multipliers technique method and compactness-uniqueness argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdallah, C., Dorato, P., Benitez-Read, J., Byrne, R.: Delayed positive feedback can stabilize oscillatory systems. in: ACC’ 1993, San Francisco, pp. 3106–3107 (1993)

  2. Ammari, K., Gerbi, S.: Interior feedback stabilization of wave equations with dynamic boundary delay. Z. Anal. Anwend. 36(3), 297–327 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batzel, J.J., Kappel, F., Timischl-Teschl, S.: A cardiovascular-respiratory control system model including state delay with application to congestive heart failure in humans. J. Math. Biol. 50(3), 293–335 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayili, G., Aissa, A.B., Nicaise, S.: Same decay rate of second order evolution equations with or without delay. Syst. Control Lett. 141, 104700 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benseghir, A.: Existence and exponential decay of solutions for transmission problems with delay. Electron. J. Differ. Eq. 214(212), 1–11 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Datko, R.: Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control. Optim. 26(3), 697–713 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Datko, R., Lagnese, J., Polis, M.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control. Optim. 24(1), 152–156 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology: Physical Origins and Classical Methods. Springer-Verlag, Berlin, Heidelberg (1990)

    MATH  Google Scholar 

  9. Engel, K.-J., Nagel, R., Brendle, S.: One-Parameter Semigroups for Linear Evolution Equations, vol. 194. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  10. Ghecham, W., Rebiai, S.-E., Sidiali, F.Z.: Stabilization of coupled wave equations with boundary or internal distributed delay. Appl. Anal. 100(14), 3096–3115 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hale, J., Verduyn Lunel, S.: Introduction to Functional Differential Equations. Springer-Verlag, New York (1993)

    Book  MATH  Google Scholar 

  12. Lasiecka, I., Triggiani, R.: Carleman estimates and exact boundary controllability for a system of coupled, nonconservative second-order hyperbolic equations. In: Lecture Notes in Pure and Applied Mathematics, vol. 188, pp. 215–243. Marcel Dekker, New York (1997)

    MATH  Google Scholar 

  13. Lasiecka, I., Triggiani, R.: Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25(2), 189–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1: Contrôlabilité exacte. Collection de recherche en mathématiques appliquées, Masson, Paris (1988)

  15. Lions, J.-L., Magenes, E.: Problemes aux Limites non Homogenes et Applications, vol. 1. Dunod, Paris (1968)

    MATH  Google Scholar 

  16. Liu, W.: Stabilization and controllability for the transmission wave equation. IEEE Trans. Autom. Control 46(12), 1900–1907 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, W., Williams, G.: The exponential stability of the problem of transmission of the wave equation. Bull. Aust. Math. Soc. 57(2), 305–327 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, G.: Well-posedness and exponential decay of solutions for a transmission problem with distributed delay. Electron. J. Differ. Eq. 174, 1–13 (2017)

    MathSciNet  Google Scholar 

  19. Liu, W.: Exponential stability of the energy of the wave equation with variable coefficients and a boundary distributed delay. Z. Naturforschung A 69(10–11), 547–552 (2014)

    Article  Google Scholar 

  20. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control. Optim. 45(5), 1561–1585 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integr. Eq. 21(9–10), 935–958 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Ning, Z.-H., Yan, Q.-X.: Stabilization of the wave equation with variable coefficients and a delay in dissipative boundary feedback. J. Math. Anal. Appl. 367(1), 167–173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ning, Z.-H., Shen, C.-X., Zhao, X.: Stabilization of the wave equation with variable coefficients and a delay in dissipative internal feedback. J. Math. Anal. Appl. 405(1), 148–155 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  25. Rebiai, S.-E., Sidiali, F.Z.: Uniform exponential stability of the transmission wave equation with a delay term in the boundary feedback. IMA J. Math. Control. Inf. 33(1), 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  26. Suh, I.H., Bien, Z.: Use of time delay action in the controller design. IEEE Trans. Automat. Control 25(3), 600–603 (1980)

    Article  MATH  Google Scholar 

  27. Xu, G.Q., Yung, S.P., Li, L.K.: Stabilization of wave systems with input delay in the boundary control. ESAIM: Control, Optim. Calculus Variat. 12(4), 770–785 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah-Eddine Rebiai.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Proof of the identity (3.10)

Appendix A Proof of the identity (3.10)

We multiply both sides of (1.1) by \(2\,h(x).\nabla y_{i}(x,t)+(divh(x)-\alpha )y_{i}(x,t)\) and integrate over \(\Omega _{i}\times (0,T), i=1,2;\) we have

$$\begin{aligned}&2\int _{0}^{T}\int _{\Omega _{i}}\partial _{t}^{2}y_{i}(x,t)h(x).\nabla y_{i}(x,t)dxdt\nonumber \\&\quad +\int _{0}^{T}\int _{\Omega _{i}}\partial _{t}^{2}y_{i}(x,t)(divh(x)-\alpha )y_{i}(x,t)dxdt \nonumber \\&\quad- 2\int _{0}^{T}\int _{\Omega _{i}}a_{i}\Delta y_{i}(x,t))h(x).\nabla y_{i}(x,t)dxdt \nonumber \\&\quad- \int _{0}^{T}\int _{\Omega _{i}}a_{i}\Delta y_{i}(x,t))(divh(x)-\alpha )y_{i}(x,t)dxdt=0. \end{aligned}$$
(A1)

We sum up (A1) for i,  we obtain

$$\begin{aligned}&2\int _{0}^{T}\int _{\Omega }\partial _{t}^{2}y(x,t)h(x).\nabla y(x,t)dxdt\nonumber \\&\quad +\int _{0}^{T}\int _{\Omega }\partial _{t}^{2}y(x,t)(divh(x)-\alpha )y(x,t)dxdt \nonumber \\&\quad- 2\int _{0}^{T}\int _{\Omega _{1}}a_{1}\Delta y_{1}(x,t))h(x).\nabla y_{1}(x,t)dxdt\nonumber \\&\quad- \int _{0}^{T}\int _{\Omega _{1}}a_{1}\Delta y_{1}(x,t))(divh(x)-\alpha )y_{1}(x,t)dxdt \nonumber \\&\quad- 2\int _{0}^{T}\int _{\Omega _{2}}a_{2}\Delta y_{2}(x,t))h(x).\nabla y_{2}(x,t)dxdt\nonumber \\&\quad- \int _{0}^{T}\int _{\Omega _{2}}a_{2}\Delta y_{2}(x,t))(divh(x)-\alpha )y_{2}(x,t)dxdt=0. \end{aligned}$$
(A2)

Below, we compute the terms on the left-hand side of (A2).

  • Term \(2\int _{0}^{T}\int _{\Omega }\partial _{t}^{2}y(x,t)h(x).\nabla y(x,t)dxdt\) Integration by parts in t yields

    $$\begin{aligned}&2\int _{0}^{T}\int _{\Omega }\partial _{t}^{2}y(x,t)h(x).\nabla y(x,t)dxdt=2 \left[ \int _{\Omega }\partial _{t}y(x,t)h(x).\nabla y(x,t)dx\right] _{0}^{T} \nonumber \\&-\quad 2\int _{0}^{T}\int _{\Omega }\partial _{t}y(x,t)h(x).\nabla \partial _{t}y(x,t)dxdt \nonumber \\&\quad = 2\left[ \int _{\Omega }\partial _{t}y(x,t)h(x).\nabla y(x,t)dx\right] _{0}^{T}\nonumber \\&\quad -\int _{0}^{T}\int _{\Omega }h(x).\nabla ((\partial _{t}y(x,t))^{2})dxdt. \end{aligned}$$
    (A3)

    Applying Green’s theorem to the second integral on the right-hand side of (A3), we obtain

    $$\begin{aligned}&2\int _{0}^{T}\int _{\Omega }\partial _{t}^{2}y(x,t)h(x).\nabla y(x,t)dxdt\nonumber \\&\quad =2 \left[ \int _{\Omega }\partial _{t}y(x,t)h(x).\nabla y(x,t)dx\right] _{0}^{T} \nonumber \\&\quad \quad -\int _{0}^{T}\int _{\Gamma }(\partial _{t}y(x,t))^{2}h(x).\nu (x)d\Gamma dt \mathbf {+}\int _{0}^{T}\int _{\Omega }(\partial _{t}y(x,t))^{2}divh(x)dxdt. \end{aligned}$$
    (A4)
  • Term \(\int _{0}^{T}\int _{\Omega }\partial _{t}^{2}y(x,t)(divh(x)-\alpha )y(x,t)dxdt\) Using again integration by parts in t, we obtain

    $$\begin{aligned}&\int _{0}^{T}\int _{\Omega }\partial _{t}^{2}y(x,t)(divh(x)-\alpha )y(x,t)dxdt \nonumber \\&\quad = \left[ \int _{\Omega }\partial _{t}y(x,t)(divh(x)-\alpha )y(x,t)dx\right] _{0}^{T}- \int _{0}^{T}\int _{\Omega }(\partial _{t}y(x,t))^{2}div(h(x)-\alpha )dxdt. \end{aligned}$$
    (A5)
  • Term \(2\int _{0}^{T}\int _{\Omega _{1}}a_{1}\Delta y_{1}(x,t))h(x).\nabla y_{1}(x,t)dxdt+2\int _{0}^{T}\int _{\Omega _{2}}a_{2}\Delta y_{2}(x,t))h(x).\nabla y_{2}(x,t)dxdt\) From Green’s theorem, we have,

    $$\begin{aligned}&2a_{1}\int _{0}^{T}\int _{\Omega _{1}}\Delta y_{1}(x,t)h(x).\nabla y_{1}(x,t)dxdt\nonumber \\&\quad =2a_{1}\int _{0}^{T}\int _{\Gamma _{1}}\frac{\partial y_{1}(x,t) }{\partial \nu }h(x).\nabla y_{1}(x,t)d\Gamma dt \nonumber \\&\quad \quad + 2a_{1}\int _{0}^{T}\int _{\Gamma _{0}}\frac{\partial y_{1}(x,t)}{\partial \nu }h(x).\nabla y_{1}(x,t)d\Gamma dt\nonumber \\&\quad \quad - 2a_{1}\int _{0}^{T}\int _{\Omega _{1}}\nabla y_{1}(x,t).\nabla (h(x).\nabla y_{1}(x,t))dxdt. \end{aligned}$$
    (A6)

    Applying the identity

    $$\begin{aligned} \nabla w(x).\nabla (h(x).\nabla w(x))=J(x)\nabla w(x).\nabla w(x)+\frac{1}{2} h(x).\nabla \left( \left| \nabla w(x)\right| ^{2}\right) \end{aligned}$$

    to the last integral on the right hand side of (A6), we find

    $$\begin{aligned}&2a_{1}\int _{0}^{T}\int _{\Omega _{1}}\Delta y_{1}(x,t)h(x).\nabla y_{1}(x,t)dxdt\\&\quad =2a_{1}\int _{0}^{T}\int _{\Gamma _{1}}\frac{\partial y_{1}(x,t) }{\partial \nu }h(x).\nabla y_{1}(x,t)d\Gamma dt \\&\quad\quad +2a_{1}\int _{0}^{T}\int _{\Gamma _{0}}\frac{\partial y_{1}(x,t)}{\partial \nu }h(x).\nabla y_{1}(x,t)d\Gamma dt\\&\quad\quad -2a_{1}\int _{0}^{T}\int _{\Omega _{1}}J(x)\nabla y_{1}(x,t).\nabla y_{1}(x,t))dxdt \\&\quad\quad- a_{1}\int _{0}^{T}\int _{\Omega _{1}}h(x).\nabla \left( \left| \nabla y_{1}(x,t)\right| ^{2}\right) . \end{aligned}$$

    Another use of Green’s theorem yields

    $$\begin{aligned}&2a_{1}\int _{0}^{T}\int _{\Omega _{1}}\Delta y_{1}(x,t)h(x).\nabla y_{1}(x,t)dxdt\nonumber \\&\quad =2a_{1}\int _{0}^{T}\int _{\Gamma _{1}}\frac{\partial y_{1}(x,t) }{\partial \nu }h(x).\nabla y_{1}(x,t)d\Gamma dt \nonumber \\&\quad\quad +2a_{1}\int _{0}^{T}\int _{\Gamma _{0}}\frac{\partial y_{1}(x,t)}{\partial \nu }h(x).\nabla y_{1}(x,t)d\Gamma dt\nonumber \\&\quad\quad -2a_{1}\int _{0}^{T}\int _{\Omega _{1}}J(x)\nabla y_{1}(x,t).\nabla y_{1}(x,t))dxdt \nonumber \\&\quad \quad-a_{1}\int _{0}^{T}\int _{\Gamma _{1}}\left| \nabla y_{1}(x,t)\right| ^{2}h(x).\nu (x)d\Gamma dt\nonumber \\&\quad \quad-a_{1}\int _{0}^{T}\int _{\Gamma _{0}}\left| \nabla y_{1}(x,t)\right| ^{2}h(x).\nu (x)d\Gamma dt \nonumber \\&\quad \quad+ a_{1}\int _{0}^{T}\int _{\Omega _{1}}\left| \nabla y_{1}(x,t)\right| ^{2}divh(x)dxdt. \end{aligned}$$
    (A7)

    For the intgral term \(2\int _{0}^{T}\int _{\Omega _{2}}a_{2}\Delta y_{2}(x,t))h(x).\nabla y_{2}(x,t)dxdt\), we proceed as above to find

    $$\begin{aligned}&2a_{2}\int _{0}^{T}\int _{\Omega _{2}}\Delta y_{2}(x,t)h(x).\nabla y_{2}(x,t)d\Omega dt\nonumber \\&\quad =2a_{2}\int _{0}^{T}\int _{\Gamma _{2}}\frac{\partial y_{2}(x,t)}{\partial \nu }h(x).\nabla y_{2}(x,t)d\Gamma dt \nonumber \\&\quad -2a_{2}\int _{0}^{T}\int _{\Gamma _{0}}\frac{\partial y_{2}(x,t)}{\partial \nu }h(x).\nabla y_{2}(x,t)d\Gamma dt\nonumber \\&\quad -2a_{2}\int _{0}^{T}\int _{\Omega _{2}}J(x)\nabla y_{2}(x,t).\nabla y_{2}(x,t))d\Omega dt \nonumber \\&\quad- a_{2}\int _{0}^{T}\int _{\Gamma _{2}}\left| \nabla y_{2}(x,t)\right| ^{2}h(x).\nu (x)d\Gamma dt\nonumber \\&\quad +a_{2}\int _{0}^{T}\int _{\Gamma _{0}}\left| \nabla y_{2}(x,t)\right| ^{2}h(x).\nu (x)d\Gamma dt \nonumber \\&\quad +a_{2}\int _{0}^{T}\int _{\Omega _{2}}\left| \nabla y_{2}(x,t)\right| ^{2}divh(x)d\Omega dt. \end{aligned}$$
    (A8)

    Summing up (A7) and (A8) yields

    $$\begin{aligned}&2\int _{0}^{T}\int _{\Omega }div(a(x)\nabla y(x,t))h(x).\nabla y(x,t) dxdt\nonumber \\&\quad =2a_{1}\int _{0}^{T}\int _{\Gamma _{1}}\frac{\partial y_{1}(x,t)}{ \partial \nu }h(x).\nabla y_{1}(x,t)d\Gamma dt\nonumber \\&\quad + 2a_{1}\int _{0}^{T}\int _{\Gamma _{0}}\frac{\partial y_{1}(x,t)}{\partial \nu }h(x).\nabla y_{1}(x,t)d\Gamma dt\nonumber \\&\quad - 2a_{1}\int _{0}^{T}\int _{\Omega _{1}}J(x)\nabla y_{1}(x,t).\nabla y_{1}(x,t))dxdt \nonumber \\&\quad - a_{1}\int _{0}^{T}\int _{\Gamma _{1}}\left| \nabla y_{1}(x,t)\right| ^{2}h(x).\nu (x)d\Gamma dt\nonumber \\&\quad -a_{1}\int _{0}^{T}\int _{\Gamma _{0}}\left| \nabla y_{1}(x,t)\right| ^{2}h(x).\nu (x)d\Gamma dt \nonumber \\&\quad + a_{1}\int _{0}^{T}\int _{\Omega _{1}}\left| \nabla y_{1}(x,t)\right| ^{2}divh(x)dxdt\nonumber \\&\quad +2a_{2}\int _{0}^{T}\int _{\Gamma _{2}}\frac{\partial y_{2}(x,t) }{\partial \nu }h(x).\nabla y_{2}(x,t)d\Gamma dt \nonumber \\&\quad - 2a_{2}\int _{0}^{T}\int _{\Gamma _{0}}\frac{\partial y_{2}(x,t)}{\partial \nu }h(x).\nabla y_{2}(x,t)d\Gamma dt \nonumber \\&\quad - 2a_{2}\int _{0}^{T}\int _{\Omega _{2}}J(x)\nabla y_{2}(x,t).\nabla y_{2}(x,t))dxdt \nonumber \\&\quad -a_{2}\int _{0}^{T}\int _{\Gamma _{2}}\left| \nabla y_{2}(x,t)\right| ^{2}h(x).\nu (x)d\Gamma dt\nonumber \\&\quad +a_{2}\int _{0}^{T}\int _{\Gamma _{0}}\left| \nabla y_{2}(x,t)\right| ^{2}h(x).\nu (x)d\Gamma dt+ \nonumber \\&\quad a_{2}\int _{0}^{T}\int _{\Omega _{2}}\left| \nabla y_{2}(x,t)\right| ^{2}divh(x)dxdt. \end{aligned}$$
    (A9)

    We conclude from the boundary conditions (1.3) and (1.5) that

    $$\begin{aligned} \nabla y_{1}(x,t)=\frac{\partial y_{1}(x,t)}{\partial \nu }\nu (x)\text { on }\Gamma _{1}\times (0,T), \end{aligned}$$
    (A10)

    and

    $$\begin{aligned} \nabla (y_{2}(x,t)-y_{1}(x,t))=\frac{\partial (y_{2}(x,t)-y_{1}(x,t))}{ \partial \nu }\nu (x),\text { on }\Gamma _{0}\times (0,T). \end{aligned}$$

    Then

    $$\begin{aligned}&\left| \nabla y_{2}(x,t)\right| ^{2} =\left| \nabla y_{1}(x,t)\right| ^{2}+2\left( \frac{\partial y_{2}(x,t)}{\partial \nu }-\frac{ \partial y_{1}(x,t)}{\partial \nu }\right) \frac{\partial y_{1}(x,t)}{\partial \nu } \nonumber \\&\quad +\left( \frac{\partial y_{2}(x,t)}{\partial \nu }-\frac{\partial y_{1}(x,t)}{ \partial \nu }\right) ^{2} =\left| \nabla y_{1}(x,t)\right| ^{2}+ \left( \frac{\partial y_{2}(x,t)}{ \partial \nu }\right) ^{2}\nonumber \\&\quad - \left( \frac{\partial y_{1}(x,t)}{\partial \nu }\right) ^{2},\text { on }\Gamma _{0}\times (0,T), \end{aligned}$$

    so on \(\Gamma _{0}\times (0,T),\)

    $$\begin{aligned}&2a_{1}\frac{\partial y_{1}(x,t)}{\partial \nu }h(x).\nabla y_{1}(x,t)\nonumber \\&\quad -2a_{2}\frac{\partial y_{2}(x,t)}{\partial \nu }h(x).\nabla y_{2}(x,t)- a_{1}\left| \nabla y_{1}(x,t)\right| ^{2}h(x).\nu (x)\nonumber \\&\quad + a_{2}\left| \nabla y_{2}(x,t)\right| ^{2}h(x).\nu (x)\nonumber \\&\quad =2a_{1}\frac{ \partial y_{1}(x,t)}{\partial \nu }h(x).\nabla y_{1}(x,t)-2a_{2}\frac{ {\partial }y_{2}(x,t)}{\partial \nu }\bigg (\nabla y_{1}(x,t)\nonumber \\&\quad + \left( \frac{ \partial y_{2}(x,t)}{\partial \nu }-\frac{{\partial }y_{1}(x,t)}{ {\partial }\nu }\right) \nu (x)\bigg ).h(x)\nonumber \\&\quad - a_{1}\left| \nabla y_{1}(x,t)\right| ^{2}h(x).\nu (x)+a_{2}\bigg (\left| \nabla y_{1}(x,t)\right| ^{2}\nonumber \\&\quad + \left( \frac{\partial y_{2}(x,t)}{{\partial }\nu }\right) ^{2}-\left( \frac{{\partial }y_{1}(x,t) }{{\partial }\nu }\right) \bigg )h(x).\nu (x)\nonumber \\&\quad =\mathbf {-}2a_{1}\left( \frac{a_{1}}{a_{2}}-1\right) \left( \frac{\partial y_{1}(x,t)}{ \partial \nu }\right) ^{2}h(x).\nu (x)\nonumber \\&\quad\quad + (a_{2}-a_{1})\left| \nabla y_{1}(x,t)\right| ^{2}h(x).\nu (x)+\bigg (\frac{a_{1}^{2}}{a_{2}}\nonumber \\&\quad -a_{2}\bigg )\left( \frac{ \partial y_{1}(x,t)}{\partial \nu }\right) ^{2}h(x).\nu (x) \nonumber \\&\quad = (a_{2}-a_{1})\left| \nabla y_{1}(x,t)\right| ^{2}h(x).\nu (x)\nonumber \\&\quad - \frac{(a_{2}-a_{1})^{2}}{a_{2}}\left( \frac{\partial y_{1}(x,t)}{\partial \nu } \right) ^{2}h(x).\nu (x). \end{aligned}$$
    (A11)

    Insertion of (A10) and (A11) into (A9) results in

    $$\begin{aligned}&2\int _{0}^{T}\int _{\Omega }div(a(x)\nabla y(x,t))h(x).\nabla y(x,t)dxdt\nonumber \\&\quad =a_{1}\int _{0}^{T}\int _{\Gamma _{1}}\left( \frac{\partial y_{1}(x,t)}{ \partial \nu }\right) ^{2}h(x).\nu (x)d\Gamma dt \nonumber \\&\quad- (a_{1}-a_{2})\int _{0}^{T}\int _{\Gamma _{0}}\left| \nabla y_{1}(x,t)\right| ^{2}h(x).\nu (x)d\Gamma \nonumber \\&\quad- \frac{(a_{2}-a_{1})^{2}}{a_{2} }\int _{0}^{T}\int _{\Gamma _{0}}\left( \frac{\partial y_{1}(x,t)}{\partial \nu } \right) ^{2}h(x).\nu (x)d\Gamma dt \nonumber \\&\quad+ 2a_{2}\int _{0}^{T}\int _{\Gamma _{2}}\frac{\partial y_{2}(x,t)}{\partial \nu }h(x).\nabla y_{2}(x,t)d\Gamma dt\nonumber \\&\quad -a_{2}\int _{0}^{T}\int _{\Gamma _{2}}\left| \nabla y_{2}(x,t)\right| ^{2}h(x).\nu (x)d\Gamma dt\nonumber \\&\quad- 2\int _{0}^{T}\int _{\Omega }a(x)J(x)\nabla y(x,t).\nabla y(x,t))dxdt\nonumber \\&\quad +\int _{0}^{T}\int _{\Omega }a(x)\left| \nabla y(x,t)\right| ^{2}divh(x)dxdt. \end{aligned}$$
    (A12)
  • Term \(a_{1}\int _{0}^{T}\int _{\Omega _{1}}\Delta y_{1}(x,t)(divh(x)-\alpha )y_{1}(x,t)dxdt+a_{2}\int _{0}^{T}\int _{\Omega _{2}}\Delta y_{2}(x,t)(divh(x)-\alpha )y_{2}(x,t)dxdt\) It follows from Green’s theorem that

    $$\begin{aligned}&a_{1}\int _{0}^{T}\int _{\Omega _{1}}\Delta y_{1}(x,t)(divh(x)-\alpha )y_{1}(x,t)dxdt \\&+\quad a_{2}\int _{0}^{T}\int _{\Omega _{2}}\Delta y_{2}(x,t)(divh(x)-\alpha )y_{2}(x,t)dxdt \\&=\quad a_{1}\int _{0}^{T}\int _{\Gamma _{1}}\frac{\partial y_{1}(x,t)}{\partial \nu }(divh(x)-\alpha )y_{1}(x,t)d\Gamma dt \\&+\quad \quad a_{1}\int _{0}^{T}\int _{\Gamma _{0}} \frac{\partial y_{1}(x,t)}{\partial \nu }(divh(x)-\alpha )y_{1}(x,t)d\Gamma dt\\&-\quad \quad a_{1}\int _{0}^{T}\int _{\Omega _{1}}\left| \nabla y_{1}(x,t)\right| ^{2}(divh(x)-\alpha )dxdt \\&-\quad \quad a_{1}\int _{0}^{T}\int _{\Omega _{1}}y_{1}(x,t)\nabla y_{1}(x,t).\nabla (divh(x)-\alpha )dxdt \\&+\quad \quad a_{2}\int _{0}^{T}\int _{\Gamma _{2}}\frac{\partial y_{2}(x,t)}{\partial \nu }(divh(x)-\alpha )y_{2}(x,t)d\Gamma dt \\&-\quad \quad a_{2}\int _{0}^{T}\int _{\Gamma _{0}} \frac{\partial y_{2}(x,t)}{\partial \nu }(divh(x)-\alpha )y_{2}(x,t)d\Gamma dt \\&-\quad \quad a_{2}\int _{0}^{T}\int _{\Omega _{2}}\left| \nabla y_{2}(x,t)\right| ^{2}(divh(x)-\alpha )dxdt\\&-\quad \quad a_{2}\int _{0}^{T}\int _{\Omega _{2}}y_{2}(x,t)\nabla y_{2}(x,t).\nabla (divh(x)-\alpha )dxdt. \end{aligned}$$

    Thus from (1.3), (1.5) and (1.6), we conclude that

    $$\begin{aligned}&a_{1}\int _{0}^{T}\int _{\Omega _{1}}\Delta y_{1}(x,t)(divh(x)-\alpha )y_{1}(x,t)dxdt\nonumber \\&+\quad a_{2}\int _{0}^{T}\int _{\Omega _{2}}\Delta y_{2}(x,t)(divh(x)-\alpha )y_{2}(x,t)dxdt \nonumber \\&=\quad a_{2}\int _{0}^{T}\int _{\Gamma _{2}}\frac{\partial y_{2}(x,t)}{\partial \nu }(divh(x)-\alpha )y_{2}(x,t)d\Gamma dt \nonumber \\&- \quad \quad \int _{0}^{T}\int _{\Omega }a(x)\left| \nabla y(x,t)\right| ^{2}(divh(x)-\alpha )dxdt \nonumber \\&-\quad \quad \int _{0}^{T}\int _{\Omega }a(x)y(x,t)\nabla y(x,t).\nabla (divh(x)-\alpha )dxdt. \end{aligned}$$
    (A13)

    The desired identity follows now from (A2), (A4), (A5), (A12) and (A13).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moumen, L., Rebiai, SE. Exponential stability of the transmission wave equation with a distributed delay term in the boundary damping. Rend. Circ. Mat. Palermo, II. Ser 72, 3459–3486 (2023). https://doi.org/10.1007/s12215-022-00834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-022-00834-8

Keywords

Mathematics Subject Classification

Navigation