Skip to main content

Advertisement

Log in

The Minkowski’s inequalities via \(\psi\)-Riemann–Liouville fractional integral operators

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

The main objective of this paper is to establish some new fractional integral inequalities of Minkowski’s type by using \(\psi\)-Riemann–Liouville fractional integral operator, which is the classical Riemann–Liouville fractional integral of any function with respect to another function. Further, we establish some new fractional inequalities related to the reverse Minkowski’s type inequality via \(\psi\)-Riemann–Liouville fractional integral operator. Using this fractional integral operator, some more integral inequalities of reverse Minkowski’s type are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aljaaidi, T.A., Pachpatte, D.B.: Some gruss-type inequalities using generalized katugampola fractional integral. AIMS Math. 5(2), 1011–1024 (2020). https://doi.org/10.3934/math.2020070

    Article  MathSciNet  Google Scholar 

  2. Almeida, R., Malinowska, A.B., Odzijewicz, T.: Fractional differential equations with dependence on the Caputo–Katugampola derivative. J. Comput. Nonlinear Dyn. (2016). https://doi.org/10.1115/1.4034432

    Article  Google Scholar 

  3. Anastassiou, G.A.: Intelligent Mathematics. Computational Analysis. Springer, Berlin (2011)

    MATH  Google Scholar 

  4. Anastassiou, G.A.: Fractional Differentiation Inequalities. Springer, Dordrecht (2010)

    MATH  Google Scholar 

  5. Baleanu, D., Mustafa, O.G.: On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 59(5), 1835–1841 (2010). https://doi.org/10.1016/j.camwa.2009.08.028

    Article  MathSciNet  MATH  Google Scholar 

  6. Bougoffa, L.: On Minkowski and Hardy integral inequalities. J. Inequal. Pure Appl. Math. 7(2), 1–3 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Chinchane, V.L., Pachpatte, D.B.: New fractional inequalities involving Saigo fractional integral operator. Math. Sci. Lett. 3(3), 133–139 (2014)

    Article  Google Scholar 

  8. Chinchane, V.L.: New approach to Minkowski’s fractional inequalities using generalized k-fractional integral operator, arXiv:1702.05234, (2017)

  9. Dahmani, Z.: On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 1(1), 51–58 (2010)

    Article  MathSciNet  Google Scholar 

  10. Debbouche, A., Antonov, V.: Finite-dimensional diffusion models of heat transfer in fractal mediums involving local fractional derivatives. Nonlinear Stud. 42(3), 527–535 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Devillanova, G., Solimini, S.: Some remarks on profile decomposition theorems. Adv. Nonlinear Stud. 16(4), 795–805 (2016)

    Article  MathSciNet  Google Scholar 

  12. Devillanova, G.: Multiscale weak compactness in metric spaces. J. Elliptic Parabol. Equ. 2(1–2), 131–144 (2016)

    Article  MathSciNet  Google Scholar 

  13. Devillanova, G., Carlo Marano, G.: A free fractional viscous oscillator as a forced standard damped vibration. Frac. Calc. Appl. Anal. 19(2), 319–356 (2016)

    Article  MathSciNet  Google Scholar 

  14. Galewski, M., Bisci, G.M.: Existence results for one-dimensional fractional equations. Math. Methods Appl. Sci. 39, 1480–1492 (2016)

    Article  MathSciNet  Google Scholar 

  15. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011)

    Book  Google Scholar 

  16. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  17. Kreyszig, E.: Introductory Functional Analysis with Applications, vol. 1. Wiley, New York (1989)

    MATH  Google Scholar 

  18. Khan, H., Abdeljawad, T., Tunç, C., Alkhazzan, A., Khan, A.: Minkowski’s inequality for the AB-fractional integral operator. J. Inequal. Appl. (2019). https://doi.org/10.1186/s13660-019-2045-3

    Article  MathSciNet  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  20. Mubeen, S., Habib, S., Naeem, M.N.: The Minkowski inequality involving generalized k-fractional conformable integral. J. Inequal. Appl. (2019). https://doi.org/10.1186/s13660-019-2040-8

    Article  MathSciNet  Google Scholar 

  21. Rahman, G., Khan, A., Abdeljawad, T., Nisar, K.S.: The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. (2019). https://doi.org/10.1186/s13662-019-2229-7

    Article  MathSciNet  Google Scholar 

  22. Samko, S.G., Kilbas, A.A., Marichev, O.I., et al.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  23. Set, E., Ozdemir, M., Dragomir, S.: On the Hermite–Hadamard inequality and other integral inequalities involving two functions. J. Inequal. Appl. (2010). https://doi.org/10.1155/2010/148102

    Article  MathSciNet  MATH  Google Scholar 

  24. Sousa, J., Oliveira, D.S.: On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the \(\psi\) -Hilfer operator. J. Fixed Point Theory Appl. 20(3), 1–21 (2018). https://doi.org/10.1007/s11784-018-0587-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Sousa, J., Oliveira, D.S., Capelas de Oliveira, E.: Gruss-type inequalities by means of generalized fractional integrals. Bull. Br. Math. Soc. (2019). https://doi.org/10.1007/s00574-019-00138-z

    Article  MathSciNet  MATH  Google Scholar 

  26. Sroysang, B.: More on reverses of Minkowski’s integral inequality. Math. Aeterna 3(7), 597–600 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Sulaiman, W.T.: Reverses of Minkowski’s, Hölder’s, and Hardy’s integral inequalities. Int. J. Mod. Math. Sci. 1(1), 14–24 (2012)

    MathSciNet  Google Scholar 

  28. Sun, H.G., Zhang, Y., Chen, W., Reeves, D.M.: Use of a variable-index fractional derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47–58 (2014). https://doi.org/10.1016/j.jconhyd.2013.11.002

    Article  Google Scholar 

  29. Taf, S., Brahim, K.: Some new results using Hadamard fractional integral. Int. J. Nonlinear Anal. Appl. 7(1), 103–109 (2015)

    MATH  Google Scholar 

  30. Usta, F., Budak, H., Ertugral, F., Sarıkaya, M.Z.: The Minkowski’s inequalities utilizing newly defined generalized fractional integral operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 68(1), 686–701 (2019)

    MathSciNet  Google Scholar 

  31. Vanterler da, J., Sousa, C., CapelasdeOliveira, E.: The Minkowski’s inequality by means of a generalized fractional integral. AIMS Ser. Appl. Math. 3(1), 131–147 (2018)

    Article  Google Scholar 

  32. Wang, G., Agarwal, P., Chand, M.: Certain Gr uss type inequalities involving the generalized fractional integral operator. J. Inequal. Appl. 147, 1 (2014). https://doi.org/10.1186/1029-242X-2014-147

    Article  Google Scholar 

  33. Yang, X.J., Machado, J.A.T., Nieto, J.J.: A new family of the local fractional PDEs. Fund. Inform. 151(1–4), 63–75 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq A. Aljaaidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljaaidi, T.A., Pachpatte, D.B. The Minkowski’s inequalities via \(\psi\)-Riemann–Liouville fractional integral operators. Rend. Circ. Mat. Palermo, II. Ser 70, 893–906 (2021). https://doi.org/10.1007/s12215-020-00539-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-020-00539-w

Keywords

Mathematics Subject Classification

Navigation