Skip to main content

Advertisement

Log in

Micro(bio)robotics: design and applications

  • REVIEW
  • Published:
Journal of Micro and Bio Robotics Aims and scope Submit manuscript

Abstract

Microrobots are motile microsystems constructed using physical, chemical and biological components for operations with respect to definite applications. In the present review, we have discussed the various aspects of microbiorobots, their history, and design. While designing a microrobot, two critical parameters (and their varities)- actuation and sensing affect the different micromanipulation techniques to be employed (Magnetic, Optical, Electric, fluidic, or acoustic). The controlling and actuation system (Vision-based or Force-sensing) selected for the specific application can dictate the fabrication type to be used for manufacture the microrobot. The type of propulsion systems, Powering system, and mobility in a complex environment, and applicability of the microrobot further influence the controlling parameters. Presently, microbiorobotics have applications in biomedical and environmental engineering. In this review, we have analyzed various aspects of microbiorobot design, fabrication, and applications that can help future works in nanosciences and microbiorobotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data and materials can be accessed via request through email.

References

  1. Schmidt CK, Medina-Sánchez M, Edmondson RJ, Schmidt OG (2020) Engineering microrobots for targeted cancer therapies from a medical perspective. Nat Commun 11:1–18

    Article  Google Scholar 

  2. Alapan Y, Yasa O, Yigit B et al (2019) Microrobotics and microorganisms : biohybrid autonomous cellular robots. Annu Rev Control Robot Auton Syst 2:205–230. https://doi.org/10.1146/annurev-control-053018-023803

  3. Federal Food, Drug and CA (2022) Generally Recognized as Safe (GRAS). https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras

  4. Federal Food, Drug and CA (2018) Microorganisms & Microbial-Derived Ingredients Used in Food (Partial List). https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list

  5. Sitti M, Ceylan H, Hu W et al (2015) Biomedical Applications of Untethered Mobile Milli/Microrobots. Proc IEEE 103:205–224. https://doi.org/10.1109/JPROC.2014.2385105

    Article  Google Scholar 

  6. Erkoc P, Yasa IC, Ceylan H et al (2018) Mobile Microrobots for Active Therapeutic Delivery. Adv Ther 2:1800064. https://doi.org/10.1002/adtp.201800064

    Article  Google Scholar 

  7. Koleoso M, Feng X, Xue Y et al (2020) Micro / nanoscale magnetic robots for biomedical applications. Materials Today Bio 8:100085. https://doi.org/10.1016/j.mtbio.2020.100085

    Article  Google Scholar 

  8. Andreff N, Wiley J (2014) In vitro non-contact mesorobotics. In: Intracorporeal Robotics : From Milliscale to Nanoscale, pp 109–147

  9. Feynman RP (1960) There ’ s Plenty of Room at the Bottom. Eng Sci 1:1–14

    Google Scholar 

  10. Fearing RS, Chiang KH, Dickinson MH et al (2000) Wing transmission for a micromechanical flying insect. Proc - IEEE Int Conf on Robotics and Automation 2:1509–1516. https://doi.org/10.1163/156856301760132123

    Article  Google Scholar 

  11. Hollar S, Flynn A, Bellew C, Pister KSJ (2003) Solar powered 10 mg silicon robot. In: The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, pp 706–711. https://doi.org/10.1109/memsys.2003.1189847

  12. Herr H, Dennis RG (2004) A swimming robot actuated by living muscle tissue. J Neuroeng Rehabil 1:1–9. https://doi.org/10.1186/1743-0003-1-6

    Article  Google Scholar 

  13. Xi J, Schmidt JJ, Montemagno CD (2005) Self-assembled microdevices driven by muscle. Nat Mater 4:180–184. https://doi.org/10.1038/nmat1308

    Article  Google Scholar 

  14. Kim J, Park J, Yang S et al (2007) Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab Chip 7:1504–1508. https://doi.org/10.1039/b705367c

    Article  Google Scholar 

  15. Feinberg AW, Feigel A, Shevkoplyas SS et al (2007) Muscular thin films for building actuators and powering devices. Science 317:1366–1370. https://doi.org/10.1126/science.1146885

    Article  Google Scholar 

  16. Hoover AM, Steltz E, Fearing RS (2008) RoACH: An autonomous 2.4g crawling hexapod robot. In: 2008 IEEE/RSJ International Conference On Intelligent Robots and Systems, pp 26–33. https://doi.org/10.1109/IROS.2008.4651149

  17. Akiyama Y, Iwabuchi K, Furukawa Y, Morishima K (2009) Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab Chip 9:140–144. https://doi.org/10.1039/b809299k

    Article  Google Scholar 

  18. Nawroth JC, Lee H, Feinberg AW et al (2014) A tissue-engineered jellyfish with biomimetic propulsion. Nature Biotechnol 30:792–797. https://doi.org/10.1038/nbt.2269.A

    Article  Google Scholar 

  19. Akiyama Y, Hoshino T, Iwabuchi K, Morishima K (2012) Room temperature operable autonomously moving bio-microrobot powered by insect dorsal vessel tissue. PLoS ONE 7:e38274. https://doi.org/10.1371/journal.pone.0038274

    Article  Google Scholar 

  20. Ma KY, Chirarattananon P, Fuller SB, Wood RJ (2013) Controlled Flight of a Biologically Inspired. Insect - Scale Robot science 340:603–607. https://doi.org/10.1126/science.1231806

    Article  Google Scholar 

  21. Akiyama Y, Sakuma T, Funakoshi K et al (2013) Atmospheric-operable bioactuator powered by insect muscle packaged with medium. Lab Chip 13:4870–4880. https://doi.org/10.1039/c3lc50490e

    Article  Google Scholar 

  22. Park S, Gazzola M, Park KS et al (2016) Phototactic guidance of a tissue-engineered soft-robotic ray. Sci Robot 353:158–162

    Google Scholar 

  23. Edd J, Payen S, Rubinsky B et al (2003) Biomimetic propulsion for a swimming surgical micro-robot. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), pp 2583–2588

  24. Darnton N, Turner L, Breuer K, Berg HC (2004) Moving Fluid with Bacterial Carpets. Biophys J 86:1863–1870. https://doi.org/10.1016/S0006-3495(04)74253-8

    Article  Google Scholar 

  25. Dreyfus R, Baudry J, Roper ML et al (2005) Microscopic artificial swimmers. Nature 437:862–865. https://doi.org/10.1038/nature04090

    Article  Google Scholar 

  26. Donald BR, Levey CG, Mcgray CD et al (2006) An Untethered, Electrostatic, Globally Controllable MEMS Micro-Robot. J Microelectromech Syst 15:1–15. https://doi.org/10.1109/JMEMS.2005.863697

    Article  Google Scholar 

  27. Yesin B, Nelson B (2006) Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int J Robot Res 25:527–536. https://doi.org/10.1177/0278364906065389

    Article  Google Scholar 

  28. Sul OJ, Falvo MR, Taylor RM et al (2006) Thermally actuated untethered impact-driven locomotive microdevices. Appl Phys Lett 89:2012–2015. https://doi.org/10.1063/1.2388135

    Article  Google Scholar 

  29. Martel S, Mathieu J, Felfoul O et al (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system Automatic navigation of an untethered device in the artery of a living. Appl Phys Lett 114105:24–27. https://doi.org/10.1063/1.2713229

    Article  Google Scholar 

  30. Pawashe C, Floyd S, Sitti M (2009) Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res 1077–1094. https://doi.org/10.1177/0278364909341413

  31. Hu W, Ishii KS, Ohta AT et al (2011) Micro-assembly using optically controlled bubble microrobots Micro-assembly using optically controlled bubble microrobots. Appl Physics Lett 99:094103. https://doi.org/10.1063/1.3631662

    Article  Google Scholar 

  32. Buzas A, Kelemen L, Mathesz A et al (2012) Light Sailboats: Laser driven autonomous microrobots. Appl Phys Lett 101:041111

    Article  Google Scholar 

  33. Baraban L, Streubel R, Makarov D et al (2012) Fuel-Free Locomotion of Janus Motors - Magnetically Induced Thermophoresis.pdf. ACS Nano 7:1360–1367

    Article  Google Scholar 

  34. Magdanz V, Sanchez S, Schmidt OG (2013) Development of a Sperm-Flagella Driven Micro-Bio-Robot. Adv Mater 25:6581–6588. https://doi.org/10.1002/adma.201302544

    Article  Google Scholar 

  35. Xi W, Solovev AA, Ananth AN et al (2013) Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery. Nanoscale 5:1294–1297. https://doi.org/10.1039/c2nr32798h

    Article  Google Scholar 

  36. Medina-sa M, Schwarz L, Meyer AK et al (2015) Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm- Carrying Micromotors. Nano letters 16:555–561. https://doi.org/10.1021/acs.nanolett.5b04221

    Article  Google Scholar 

  37. Walker D, Käsdorf BT, Jeong H et al (2015) Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv 1:e1500501

    Article  Google Scholar 

  38. Qiu F, Fujita S, Mhanna R et al (2015) Magnetic Helical Microswimmers Functionalized with Lipoplexes for Targeted Gene Delivery. Adv Funct Mater 25:1–6. https://doi.org/10.1002/adfm.201403891

    Article  Google Scholar 

  39. Breger JC, Yoon C, Xiao R et al (2015) Self-Folding Thermo-Magnetically Responsive Soft Microgrippers. ACS Appl Mater Interfaces 7:3398–3405. https://doi.org/10.1021/am508621s

    Article  Google Scholar 

  40. Felfoul O, Mohammadi M, Taherkhani S et al (2016) Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol 11:941–947. https://doi.org/10.1038/nnano.2016.137

    Article  Google Scholar 

  41. Srivastava SK, Medina-sánchez M, Koch B, Schmidt OG (2016) Medibots : Dual-Action Biogenic Microdaggers for Single-Cell Surgery and Drug Release. Adv Mater 28:832–837. https://doi.org/10.1002/adma.201504327

    Article  Google Scholar 

  42. Li H, Go G, Ko SY et al (2016) Magnetic actuated pH-responsive hydrogel- based soft micro-robot for targeted drug delivery. Smart Mater Struct 25:027001. https://doi.org/10.1088/0964-1726/25/2/027001

    Article  Google Scholar 

  43. Yan X, Zhou Q, Vincent M et al (2017) Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics 2:eaaq1155

    Article  Google Scholar 

  44. Villa K, Krejc L, Novotny F et al (2018) Cooperative Multifunctional Self-Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Adv Funct Mater 28:1804343. https://doi.org/10.1002/adfm.201804343

    Article  Google Scholar 

  45. Li J, Li X, Luo T et al (2018) Development of a magnetic microrobot for carrying and delivering targeted cells. Science Robotics 3:eaat8829. https://doi.org/10.1126/scirobotics.aat8829

    Article  Google Scholar 

  46. Lee S, Lee S, Kim S et al (2018) Fabrication and Characterization of a Magnetic Drilling Actuator for Navigation in a Three-dimensional Phantom Vascular Network. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-22110-5

    Article  Google Scholar 

  47. Lin Z, Fan X, Sun M et al (2018) Magnetically-Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. ACS Nano 12:2539–2545. https://doi.org/10.1021/acsnano.7b08344

    Article  Google Scholar 

  48. Wu Z, Troll J, Jeong H et al (2018) A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv 4:4388. https://doi.org/10.1126/sciadv.aat4388

    Article  Google Scholar 

  49. Hwang G, Paula AJ, Hunter EE et al (2019) Catalytic antimicrobial robots for biofilm eradication. Science Robotics 2388:eaaw2388. https://doi.org/10.1126/scirobotics.aaw2388

    Article  Google Scholar 

  50. Vikram A, Hasan M, Ansari D et al (2019) Biomaterials Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials 219:119394. https://doi.org/10.1016/j.biomaterials.2019.119394

    Article  Google Scholar 

  51. Ceylan H, Yasa IC, Yasa O et al (2019) 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release. ACS Nano 13:3353–3362. https://doi.org/10.1021/acsnano.8b09233

    Article  Google Scholar 

  52. Jin D, Chan K, Wang Q et al (2019) Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-13576-6

    Article  Google Scholar 

  53. Iacovacci V, Blanc A, Huang H et al (2019) High-Resolution SPECT Imaging of Stimuli-Responsive Soft Microrobots. Small 15:1900709. https://doi.org/10.1002/smll.201900709

    Article  Google Scholar 

  54. Claussen J, Schmidt OG (2019) Real-Time Optoacoustic Tracking of Single Moving Micro-objects in Deep Phantom and Ex Vivo Tissues. Nano Lett 19:6612–6620. https://doi.org/10.1021/acs.nanolett.9b02869

    Article  Google Scholar 

  55. Jeon S, Kim S, Ha S et al (2019) Magnetically actuated microrobots as a platform for stem cell transplantation. Science Robotics 4:eaav4317. https://doi.org/10.1126/scirobotics.aav4317

    Article  Google Scholar 

  56. Vyskočil J, Mayorga-Martinez CC, Jablonska E et al (2020) Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a tranversal rotating magnetic field. ACS Nano 14:8247–8256. https://doi.org/10.1021/acsnano.0c01705

    Article  Google Scholar 

  57. Bhuyan T, Simon AT, Maity S et al (2020) Magnetotactic T-Budbots to Kill-n-Clean Biofilms. ACS Appl Mater Interfaces 12:43352–43364. https://doi.org/10.1021/acsami.0c08444

    Article  Google Scholar 

  58. Alapan Y, Bozuyuk U, Erkoc P et al (2020) Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Sci Robot 5:eaba5726. https://doi.org/10.1126/scirobotics.aba5726

    Article  Google Scholar 

  59. Schwarz L, Karnaushenko DD, Hebenstreit F et al (2020) A Rotating Spiral Micromotor for Noninvasive Zygote Transfer. Adv Sci 7:2000843. https://doi.org/10.1002/advs.202000843

    Article  Google Scholar 

  60. Maitz MF, Werner C, Schmidt OG et al (2020) Sperm Micromotors for Cargo Delivery through Flowing Blood. ACS Nano 14:2982–2993. https://doi.org/10.1021/acsnano.9b07851

    Article  Google Scholar 

  61. Mayorga-Martinez CC, Zelenka J, Grmela J et al (2021) Swarming Aqua Sperm Micromotors for Active Bacterial Biofilms Removal in Confined Spaces. Adv Sci 8:1–7. https://doi.org/10.1002/advs.202101301

    Article  Google Scholar 

  62. Gong D, Li B, Celi N et al (2021) Efficient Removal of Pb(II) from Aqueous Systems Using Spirulina-Based Biohybrid Magnetic Helical Microrobots. ACS Appl Mater Interfaces 13:53131–53142. https://doi.org/10.1021/acsami.1c18435

    Article  Google Scholar 

  63. Chen H, Li Y, Wang Y et al (2022) An Engineered Bacteria-Hybrid Microrobot with the Magnetothermal Bioswitch for Remotely Collective Perception and Imaging-Guided Cancer Treatment. ACS Nano 16:6118–6133. https://doi.org/10.1021/acsnano.1c11601

    Article  Google Scholar 

  64. Noh S, Jeon S, Kim E et al (2022) A Biodegradable Magnetic Microrobot Based on Gelatin Methacrylate for Precise Delivery of Stem Cells with Mass Production Capability. Small 18:1–8. https://doi.org/10.1002/smll.202107888

    Article  Google Scholar 

  65. Go G, Yoo A, Nguyen KT et al (2022) Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. Sci Adv 8:1–20. https://doi.org/10.1126/sciadv.abq8545

    Article  Google Scholar 

  66. Kim E, Jeon S, Yang YS et al (2023) A Neurospheroid-Based Microrobot for Targeted Neural Connections in a Hippocampal Slice. Adv Mater 2208747:1–14. https://doi.org/10.1002/adma.202208747

    Article  Google Scholar 

  67. Studer T, Morina D, Shchelik IS, Gademann K (2023) Biohybrid Microswimmers for Antibiotic Drug Delivery Based on a Thiol-Sensitive Release Platform. Chem- A Eur J 29:e2022039134

    Article  Google Scholar 

  68. Martel S (2012) Bacterial microsystems and microrobots. Biomed Microdevice 14:1033–1045. https://doi.org/10.1007/s10544-012-9696-x

    Article  Google Scholar 

  69. Carlsen RW, Sitti M (2014) Bio-Hybrid Cell-Based Actuators for Microsystems. Small 10:3831–3851. https://doi.org/10.1002/smll.201400384

    Article  Google Scholar 

  70. Ricotti L, Trimmer B, Feinberg AW et al (2017) Biohybrid actuators for robotics : A review of devices actuated by living cells. Sci Robot 2:1–18. https://doi.org/10.1126/scirobotics.aaq0495

    Article  Google Scholar 

  71. Bastos-arrieta J, Revilla-guarinos A, Uspal WE (2018) Bacterial Biohybrid Microswimmers. Front Robot AI 5:97. https://doi.org/10.3389/frobt.2018.00097

    Article  Google Scholar 

  72. Cho S, Park SJ, Ko SY (2012) Development of bacteria-based microrobot using biocompatible poly ( ethylene glycol ). Biomed Microdevice 14:1019–1025. https://doi.org/10.1007/s10544-012-9704-1

    Article  Google Scholar 

  73. Park SJ, Park SH, Cho S et al (2013) New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep 3:3394. https://doi.org/10.1038/srep03394

    Article  Google Scholar 

  74. Park BW, Zhuang J, Yasa O, Sitti M (2017) Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery. ACS Nano 11:8910–8923. https://doi.org/10.1021/acsnano.7b03207

    Article  Google Scholar 

  75. Kim D, Liu A, Diller E, Sitti M (2012) Chemotactic steering of bacteria propelled microbeads. Biomed Microdevice 14:1009–1017. https://doi.org/10.1007/s10544-012-9701-4

    Article  Google Scholar 

  76. Miyamoto T, Kojima M, Nakajima M et al (2012) Rotation of bacteria sheet driven micro gear in open micro channel. In: 2012 IEEE International Conference on Robotics and Automation, pp 4080–4085. https://doi.org/10.1109/ICRA.2012.6225345

  77. Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS (2009) Swimming bacteria power microscopic gears. In: Proceedings of the National Academy of Sciences, pp 969–974. https://doi.org/10.1073/pnas.0913015107

  78. Hiratsuka Y, Miyata M, Tada T, Uyeda TQP (2006) A microrotary motor powered by bacteria. Proc Natl Acad Sci USA 103:13618–13623. https://doi.org/10.1073/pnas.0604122103

    Article  Google Scholar 

  79. Itoh A (2000) Motion control of protozoa for bio MEMS. IEEE/ASME Trans Mechatron 5:181–188. https://doi.org/10.1109/3516.847091

    Article  Google Scholar 

  80. Nagai M, Ryu S, Thorsen T et al (2010) Chemical control of Vorticella bioactuator using microfluidics. Lab Chip 10:1574–1578. https://doi.org/10.1039/c003427d

    Article  Google Scholar 

  81. Nagai M, Hayasaka Y, Kato K et al (2013) Mixing of solutions by coordinated ciliary motion in Vorticella convallaria and patterning method for microfluidic applications. Sens Actuators, B Chem 188:1255–1262. https://doi.org/10.1016/j.snb.2013.08.040

    Article  Google Scholar 

  82. Becker A, Ou Y, Kim P et al (2013) Feedback control of many magnetized tetrahymena pyriformis cells by exploiting phase inhomogeneity. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp 3317–3323. https://doi.org/10.1109/IROS.2013.6696828

  83. Kim DH, Casale D, Kõhidai L, Kim MJ (2009) Galvanotactic and phototactic control of Tetrahymena pyriformis as a microfluidic workhorse. Appl Phys Lett 94. https://doi.org/10.1063/1.3123254

  84. Kim D, Brigandi S, Kim P, Kim MJ (2012) Control of Tetrahymena pyriformis as a Microrobot. Elsevier, Oxford UK

    Book  Google Scholar 

  85. Weibel DB, Garstecki P, Ryan D et al (2005) Microoxen: Microorganisms to move microscale loads. Proc Natl Acad Sci 102(34):11963–11967. https://doi.org/10.1073/pnas.0505481102

  86. Chen Y, Kosmas P, Martel S (2013) A Feasibility Study for Microwave Breast Cancer Detection Using Contrast-Agent-Loaded Bacterial Microbots. Int J Antennas Propagation 2013:1–11. https://doi.org/10.1155/2013/309703

    Article  Google Scholar 

  87. Morishima K, Tanaka Y, Ebara M et al (2006) Demonstration of a bio- microactuator powered by cultured cardiomyocytes coupled to hydrogel micropillars. Sensors Actuators B:345–350. https://doi.org/10.1016/j.snb.2005.11.063

    Article  Google Scholar 

  88. Tanaka Y, Morishima K, Shimizu T et al (2006) An actuated pump on-chip powered by cultured cardiomyocytes. Lab Chip 6:362–368. https://doi.org/10.1039/b515149j

    Article  Google Scholar 

  89. Steager EB, Sakar MS, Kim DH et al (2011) Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng 21:035001. https://doi.org/10.1088/0960-1317/21/3/035001

  90. Shechter E, Martel S (2010) Principles of motion control of bacterial micro-robots using oxygen gradients. In: 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, pp 848–853

  91. Martel S (2014) Towards Fully Autonomous Bacterial Microrobots. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  92. Martel S, Mohammadi M (2010) Using a Swarm of Self-propelled Natural Microrobots in the Form of Flagellated Bacteria to Perform Complex Micro-assembly Tasks. In: IEEE international conference on robotics and automation. 500–505

  93. Chen C, Ma Q, Jiang W, Song T (2011) Phototaxis in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1 is independent of magnetic fields. Appl Microbiol Biotechnol 90:269–275. https://doi.org/10.1007/s00253-010-3017-1

    Article  Google Scholar 

  94. Martel S, Mohammadi M (2016) Switching between Magnetotactic and Aerotactic Displacement Controls to Enhance the Efficacy of MC-1 Magneto-Aerotactic Bacteria as Cancer-Fighting Nanorobots. Micromachines 7:97. https://doi.org/10.3390/mi7060097

    Article  Google Scholar 

  95. Diller E, Sitti M (2013) Micro-Scale Mobile Robotics. Found Trends® in Robotics 2:143–259. https://doi.org/10.1561/2300000023

    Article  Google Scholar 

  96. Rev A, Robot C, Syst A et al (2019) Robotic Micromanipulation : Fundamentals and Applications. Annu Rev Control, Robot Auton Syst 2:181–203. https://doi.org/10.1146/annurev-control-053018-023755

    Article  Google Scholar 

  97. Kummer MP, Member S, Abbott JJ et al (2010) OctoMag : An Electromagnetic System for 5-DOF Wireless Micromanipulation. IEEE Trans Robot 26:1006–1017. https://doi.org/10.1109/TRO.2010.2073030

    Article  Google Scholar 

  98. Vonthron M, Member S, Lalande V et al (2011) A MRI-based integrated platform for the navigation of micro- devices and microrobots. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1285–1290

  99. Tweezer ATM, Wang X, Luo M et al (2018) A Three-Dimensional Magnetic Tweezer System for Intraembryonic Navigation and Measurement. IEEE Trans Robot 34:240–247. https://doi.org/10.1109/TRO.2017.2765673

    Article  Google Scholar 

  100. Wang B, Chan KF, Yu J et al (2018) Reconfigurable Swarms of Ferromagnetic Colloids for Enhanced Local Hyperthermia. Adv Func Mater 28:1–12. https://doi.org/10.1002/adfm.201705701

    Article  Google Scholar 

  101. Qiu F, Fujita S, Mhanna R et al (2015) Magnetic Helical Microswimmers Functionalized with Lipoplexes for Targeted Gene Delivery. Adv Func Mater 25:1666–1671. https://doi.org/10.1002/adfm.201403891

    Article  Google Scholar 

  102. Kumemura M, Collard D, Sakaki N et al (2011) Single-DNA-molecule trapping with silicon nanotweezers using pulsed dielectrophoresis. J Micromech Microeng 21:054020. https://doi.org/10.1088/0960-1317/21/5/054020

    Article  Google Scholar 

  103. Lownes Urbano R, Morss Clyne A (2016) An inverted dielectrophoretic device for analysis of attached single cell mechanics. Lab Chip 16:561–573. https://doi.org/10.1039/c5lc01297j

    Article  Google Scholar 

  104. Velev OD, Bhatt KH (2006) On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2:738–750. https://doi.org/10.1039/b605052b

    Article  Google Scholar 

  105. Pieters RS, Tung HW, Sargent DF, Nelson BJ (2014) Non-contact manipulation for automated protein crystal harvesting using a rolling microrobot. IFAC Proceedings Volumes. IFAC 47(3):7480–7485

  106. Zhang Z, Liu J, Wang X et al (2017) Robotic Pick-And-Place of Multiple Embryos for Vitrification. IEEE Robot Autom Lett 2:570–576. https://doi.org/10.1109/LRA.2016.2640364

    Article  Google Scholar 

  107. Dao M, Suresh S, Huang TJ et al (2015) Acoustic separation of circulating tumor cells. Proc Natl Acad Sci 112:4970–4975. https://doi.org/10.1073/pnas.1504484112

    Article  Google Scholar 

  108. Naseer SM, Manbachi A, Samandari M et al (2017) Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels. Biofabrication 9:015020. https://doi.org/10.1088/1758-5090/aa585e

    Article  Google Scholar 

  109. Bharti A, Turchet A, Marmiroli B (2022) X-Ray Lithography for Nanofabrication : Is There a Future? Front Nanotechnol 4:1–8. https://doi.org/10.3389/fnano.2022.835701

    Article  Google Scholar 

  110. McMurray R, J M, Gadegaar N (2011) Nanopatterned Surfaces for biomedical applications. Biomedical engineering, trends in materials science, 22. https://doi.org/10.5772/13453

  111. Kalaiselvi SMP, Tang EX, Moser HO et al (2022) Wafer scale manufacturing of high precision micro-optical components through X-ray lithography yielding 1800 Gray Levels in a fingertip sized chip. Sci Rep 12:1–12. https://doi.org/10.1038/s41598-022-06688-5

    Article  Google Scholar 

  112. Zhang H, Hutmacher DW, Chollet F et al (2013) Microrobotics and MEMS-Based Fabrication Techniques for Scaffold- Based Tissue Engineering. Macromol Biosci 5:477–489. https://doi.org/10.1002/mabi.200400202

    Article  Google Scholar 

  113. Vozzi G, Flaim C, Ahluwalia A, Bhatia S (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540. https://doi.org/10.1016/S0142-9612(03)00052-8

    Article  Google Scholar 

  114. Nadine S, Chung A, Emir S et al (2022) Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 46:E211–E243. https://doi.org/10.1111/aor.14232

    Article  Google Scholar 

  115. Raman R, Bashir R (2015) Stereolithographic 3D Bioprinting for Biomedical Applications. Elsevier Inc

    Book  Google Scholar 

  116. Li J, Chen M, Fan X, Zhou H (2016) Recent advances in bioprinting techniques: Approaches, applications and future prospects. J Transl Med 14:1–15. https://doi.org/10.1186/s12967-016-1028-0

    Article  Google Scholar 

  117. Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: Principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5:507–515. https://doi.org/10.2217/nnm.10.14

    Article  Google Scholar 

  118. Steager EB, Sakar MS, Magee C et al (2013) Automated biomanipulation of single cells using magnetic microrobots. Int J Robot Res 32:346–359. https://doi.org/10.1177/0278364912472381

    Article  Google Scholar 

  119. Linder V, Gates BD, Ryan D et al (2005) Water-Soluble Sacrificial Layers for Surface Micromachining. Small 1:730–736. https://doi.org/10.1002/smll.200400159

    Article  Google Scholar 

  120. Mondal P, Saundarkar S, Khantwal N et al (2022) Fabrication of microfluidic channel of polydimethylsiloxane using X-ray lithography and its surface nanostructuring. J Micromanuf 5:107–115. https://doi.org/10.1177/25165984211015760

    Article  Google Scholar 

  121. Ali M, Pages E, Ducom A et al (2014) Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 6:045001. https://doi.org/10.1088/1758-5082/6/4/045001

  122. Xie J, Chen K, Chen X (2009) Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Res 2:261–278. https://doi.org/10.1007/s12274-009-9025-8

    Article  Google Scholar 

  123. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for Minimally Invasive Medicine. Annu Rev Biomed Eng 12:55–85. https://doi.org/10.1146/annurev-bioeng-010510-103409

    Article  Google Scholar 

  124. Abbott J (2007) Robotics in the Small, Part I: Microbotics. IEEE Robot Autom Mag 14:92–103. https://doi.org/10.1109/MRA.2007.380641

    Article  Google Scholar 

  125. Son D, Gilbert H, Sitti M, Al SONET (2020) Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy. Soft Rob 7:1–12. https://doi.org/10.1089/soro.2018.0171

    Article  Google Scholar 

  126. Lee W, Nam J, Jang B, Jang G (2017) Selective motion control of a crawling magnetic robot system for wireless self-expandable stent delivery in narrowed tubular environments. IEEE Trans Industr Electron 64:1636–1644. https://doi.org/10.1109/TIE.2016.2580126

    Article  Google Scholar 

  127. Diller E, Giltinan J, Sitti M (2013) Independent control of multiple magnetic microrobots in three dimensions. Int J Robot Res 32:614–631. https://doi.org/10.1177/0278364913483183

    Article  Google Scholar 

  128. Wang M, Wu T, Liu R et al (2023) Selective and Independent Control of Microrobots in a Magnetic Field: A Review. Engineering. https://doi.org/10.1016/j.eng.2023.02.011

    Article  Google Scholar 

  129. Abbott JJ, Diller E, Petruska AJ (2020) Magnetic Methods in Robotics. Annu Rev Control, Robot Auton Syst 3:57–90. https://doi.org/10.1146/annurev-control-081219-082713

    Article  Google Scholar 

  130. Yang Z, Zhang L (2020) Magnetic Actuation Systems for Miniature Robots : A Review. Adv Intell Syst 2:2000082. https://doi.org/10.1002/aisy.202000082

    Article  Google Scholar 

  131. Markande A, Mistry K, Undaviya S, Jha A (2021) Magnetic nanoparticles from bacteria. Biobased Nanotechnology for Green Applications, pp 101–120. https://doi.org/10.1007/978-3-030-61985-5_4

  132. Nguyen KT, Kim SJ, Min HK et al (2021) Guide-Wired Helical Microrobot for Percutaneous Revascularization in Chronic Total Occlusion in-Vivo Validation. IEEE Trans Biomed Eng 68:2490–2498. https://doi.org/10.1109/TBME.2020.3046513

    Article  Google Scholar 

  133. Jones AC, Milthorpe B, Averdunk H et al (2004) Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials 25:4947–4954. https://doi.org/10.1016/j.biomaterials.2004.01.047

    Article  Google Scholar 

  134. Kim S, Qiu F, Kim S et al (2013) Fabrication and Characterization of Magnetic Microrobots for Three-Dimensional Cell Culture and Targeted Transportation. Adv Mater 25:5863–5868. https://doi.org/10.1002/adma.201301484

    Article  Google Scholar 

  135. Haga Y, Esashi M (2004) Biomedical microsystems for minimally invasive diagnosis and treatment. Proc IEEE 92:98–114. https://doi.org/10.1109/JPROC.2003.820545

    Article  Google Scholar 

  136. Park S, Cha K, Park J (2010) Development of biomedical microrobot for intravascular therapy. Int J Adv Rob Syst 7:97–98. https://doi.org/10.5772/7260

    Article  Google Scholar 

  137. Park J, Jin C, Lee S et al (2019) Magnetically Actuated Degradable Microrobots for Actively Controlled Drug Release and Hyperthermia Therapy. Adv Healthcare Mater 8:1900213. https://doi.org/10.1002/adhm.201900213

    Article  Google Scholar 

  138. Nguyen KT, Go G, Jin Z et al (2021) A magnetically guided self-rolled microrobot for targeted drug delivery, real-time x-ray imaging, and microrobot retrieval. Adv Healthc Mater 10:2001681. https://doi.org/10.1002/adhm.202001681

  139. Wang Q, Zhang J, Yu J et al (2023) Untethered Small-Scale Machines for Microrobotic Manipulation: From Individual and Multiple to Collective Machines. ACS Nano 17:13081–13109. https://doi.org/10.1021/acsnano.3c05328

    Article  Google Scholar 

  140. Gao C, Lin Z, Wang D et al (2019) Red Blood Cell-Mimicking Micromotor for Active Photodynamic Cancer Therapy. ACS Appl Mater Interfaces 11:23392–23400. https://doi.org/10.1021/acsami.9b07979

    Article  Google Scholar 

  141. Kanwar JR, Samarasinghe RM, Kamalapuram SK, Kanwar RK (2016) Multimodal nanomedicine strategies for targeting cancer cells as well as cancer stem cell signalling mechanisms. Mini-Rev Med Chem 17(18). https://doi.org/10.2174/1389557516666160219121634

  142. Chen H, Li T, Liu Z et al (2023) A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat Commun 14:1–21. https://doi.org/10.1038/s41467-022-35709-0

    Article  Google Scholar 

  143. Hortelao AC, Carrascosa R, Murillo-Cremaes N et al (2019) Targeting 3D Bladder Cancer Spheroids with Urease-Powered Nanomotors. ACS Nano 13:429–439. https://doi.org/10.1021/acsnano.8b06610

    Article  Google Scholar 

  144. Jeon S, Park SH, Kim E et al (2021) A Magnetically Powered Stem Cell-Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain. Adv Healthcare Mater 10:1–9. https://doi.org/10.1002/adhm.202100801

    Article  Google Scholar 

  145. Nauber R, Goudu SR, Goeckenjan M et al (2023) Medical microrobots in reproductive medicine from the bench to the clinic. Nat Commun 14:1–9. https://doi.org/10.1038/s41467-023-36215-7

    Article  Google Scholar 

  146. He C, Patel N, Shahbazi M et al (2020) Toward Safe Retinal Microsurgery: Development and Evaluation of an RNN-Based Active Interventional Control Framework. IEEE Trans Biomed Eng 67:966–977. https://doi.org/10.1109/TBME.2019.2926060

    Article  Google Scholar 

  147. Ergeneman O, Member S, Dogangil G et al (2008) A Magnetically Controlled Wireless Optical Oxygen Sensor for Intraocular Measurements. IEEE Sens J 8:29–37. https://doi.org/10.1109/JSEN.2007.912552

    Article  Google Scholar 

  148. Dogangil G, Ergeneman O, Abbott JJ  et al (2008) Toward targeted retinal drug delivery with wireless magnetic microrobots. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp 1921–1926

  149. Son D, Gilbert H, Sitti M, Al SONET (2019) Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy. Soft Rob 77:10–21. https://doi.org/10.1089/soro.2018.0171

    Article  Google Scholar 

  150. De Ávila BEF, Angsantikul P, Li J et al (2017) Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat Commun 8:272. https://doi.org/10.1038/s41467-017-00309-w

    Article  Google Scholar 

  151. Ussia M, Urso M, Kratochvilova M et al (2023) Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate. Small 19:2208259. https://doi.org/10.1002/smll.202208259

    Article  Google Scholar 

  152. Parker MA, Cotanche A (2004) The Potential Use of Stem Cells for Cochlear Repair. Audiol Neuro - Otol 9:72–80. https://doi.org/10.1159/000075998

    Article  Google Scholar 

  153. Dario P, Carrozza MC, Benvenuto A (2000) Micro-systems in biomedical applications. J Micromech Microeng 10:235. https://doi.org/10.1088/0960-1317/10/2/322

    Article  Google Scholar 

  154. Nguyen N, Wu Z (2005) Micromixers — a review. J Micromech Microeng 15:1–16. https://doi.org/10.1088/0960-1317/15/2/R01

    Article  Google Scholar 

  155. Zhou H, Mayorga-Martinez CC, Pané S et al (2021) Magnetically Driven Micro and Nanorobots. Chem Rev 121:4999–5041. https://doi.org/10.1021/acs.chemrev.0c01234

    Article  Google Scholar 

  156. Stueber DD, Villanova J, Aponte I et al (2021) Magnetic nanoparticles in biology and medicine: Past, present, and future trends. Pharmaceutics 13:943. https://doi.org/10.3390/pharmaceutics13070943

    Article  Google Scholar 

  157. Wu Z, Li L, Yang Y et al (2019) A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci Robot 4:eaax0613. https://doi.org/10.1126/scirobotics.aax0613

  158. Wang Y, Shen J, Handschuh-wang S et al (2023) Microrobots for targeted delivery and therapy in digestive system. ACS Nano 17:27–50. https://doi.org/10.1021/acsnano.2c04716

    Article  Google Scholar 

  159. Yang X, Shang W, Lu H et al (2020) An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications. Sci Robot 5:1–13. https://doi.org/10.1126/scirobotics.abc8191

    Article  Google Scholar 

  160. Tan R, Yang X, Lu H et al (2022) Nanofiber-based biodegradable millirobot with controllable anchoring and adaptive stepwise release functions. Matter 5:1277–1295. https://doi.org/10.1016/j.matt.2022.01.023

    Article  Google Scholar 

  161. Felfoul O, Martel S (2013) Assessment of navigation control strategy for magnetotactic bacteria in microchannel: Toward targeting solid tumors. Biomed Microdevice 15:1015–1024. https://doi.org/10.1007/s10544-013-9794-4

    Article  Google Scholar 

  162. Maeda K, Imae Y, Shioi JI, Oosawa F (1976) Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol 127:1039–1046. https://doi.org/10.1128/jb.127.3.1039-1046.1976

    Article  Google Scholar 

  163. Magariyama Y, Sugiyama S, Kudo S (2001) Bacterial swimming speed and rotation rate of bundled flagella. FEMS Microbiol Lett 199:125–129. https://doi.org/10.1016/S0378-1097(01)00166-5

    Article  Google Scholar 

Download references

Acknowledgements

KM would like to acknowledge SHODH-ScHeme of Developing High Quality Research, Knowledge Consortium of Gujarat, Education Department, Government of Gujarat for continuous support and all authors would like to thank Principle, PDPIAS, CHARUSAT for encouragements.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Anoop R. Markande.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mistry, K.J., Markande, A.R. Micro(bio)robotics: design and applications. J Micro-Bio Robot 19, 1–20 (2023). https://doi.org/10.1007/s12213-023-00163-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-023-00163-8

Keywords

Navigation