Skip to main content
Log in

Energy dissipation by metamorphic micro-robots in viscous fluids

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

Microscopic robots could perform tasks with high spatial precision, such as acting on precisely-targeted cells in biological tissues. Some tasks may benefit from robots that change shape, such as elongating to improve chemical gradient sensing or contracting to squeeze through narrow channels. This paper evaluates the energy dissipation for shape-changing (i.e., metamorphic) robots whose size is comparable to bacteria. Unlike larger robots, surface forces dominate the dissipation. Theoretical estimates indicate that the power likely to be available to the robots, as determined by previous studies, is sufficient to change shape fairly rapidly even in highly-viscous biological fluids. Achieving this performance will require significant improvements in manufacturing and material properties compared to current micromachines. Furthermore, optimally varying the speed of shape change only slightly reduces energy use compared to uniform speed, thereby simplifying robot controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The dissipation shown here is somewhat larger than the value ignoring fluid vorticity [19], due to additional dissipation arising from the velocity gradient at the ends of the treadmill. Dissipation due to this edge-effect depends on the distance at the ends of the tread over which velocity changes. This study uses a distance corresponding to 50 nm bearings for the treadmill [19].

References

  1. Arbuckle D, Requicha AAG (2004) Active self-assembly. In: Tarn TJ, Fukuda T (eds) Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, Los Alamitos, pp 896–901

  2. Berg HC (1993) Random Walks in Biology, 2nd edn. Princeton Univ. Press

  3. Berg HC (2004) E. coli in motion. Springer, New York

    Book  Google Scholar 

  4. Bojinov H, Casal A, Hogg T (2002) Multiagent control of modular self-reconfigurable robots. Artif Intell 142:99–120. arXiv:preprintcs.RO/0006030

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: From natural to artificial systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  6. Castano A, Shen WM, Will P (2000) CONRO: Towards miniature self-sufficient metamorphic robots. Auton Robot 8:309–324

    Article  Google Scholar 

  7. Chan ML et al. (2011) Low friction liquid bearing MEMS micromotor. In: Proceedings of 24th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). doi:10.1109/MEMSYS.2011.5734656, pp 1237–1240

  8. Cumings J, Zettl A (2000) Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289:602–604

    Article  Google Scholar 

  9. Drexler KE (1992) Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, New York

    Google Scholar 

  10. Duan X et al. (2012) Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol 7:174–179. doi:10.1038/nnano.2011.223

    Article  Google Scholar 

  11. Dusenbery DB (1998) Fitness landscapes for effects of shape on chemotaxis and other behaviors of bacteria. J Bacteriol 180:5978–5983

    Google Scholar 

  12. Dusenbery DB (2009) Living at micro scale: The unexpected physics of being small. Harvard Univ. Press, Cambridge

    Google Scholar 

  13. Freitas Jr. RA (1999) Nanomedicine: Basic Capabilities, vol I. Landes Bioscience, Georgetown. www.nanomedicine.com/NMI.htm

  14. Freitas Jr RA (2000) Clottocytes: Artificial mechanical platelets IMM Report 18: Nanomedicine, Institute for Molecular Manufacturing, Palo Alto, CA

  15. Gao R, et al. (2012) Outside looking in: Nanotube transistor intracellular sensors. Nano Letters 12:3329–3333

    Article  Google Scholar 

  16. Goldstein SC, et al. (2009) Beyond audio and video: Using claytronics to enable pario. AI Magazine 30 (2):29–45

    Google Scholar 

  17. Happel J, Brenner H (1983) Low Reynolds Number Hydrodynamics, 2nd edn. Kluwer, The Hague

    MATH  Google Scholar 

  18. Hernandez-Ortiz JP, Stoltz CG, Graham MD (2005) Transport and collective dynamics in suspensions of confined swimming particles. Phys Rev Lett 95(204):501

    Google Scholar 

  19. Hogg T (2014) Using surface-motions for locomotion of microscopic robots in viscous fluids. J Micro-Bio Robotics 9:61–77. doi:10.1007/s12213-014-0074-z

    Article  Google Scholar 

  20. Hogg T, Freitas Jr. R.A (2010) Chemical power for microscopic robots in capillaries. Nanomedicine: Nanotechnology Biology, and Medicine 6:298–317. doi:10.1016/j.nano.2009.10.002

    Google Scholar 

  21. Hogg T, Freitas Jr RA (2012) Acoustic communication for medical nanorobots. Nano Communication Networks 3:83–102. doi:10.1016/j.nancom.2012.02.002

    Article  Google Scholar 

  22. Kim S, Karrila SJ (2005) Microhydrodynamics. Dover

  23. Kotay K, Rus D, Vona M, McGray C (1998) The self-reconfiguring robotic molecule. In: Proc. of the Conference on Robotics and Automation (ICRA98), p. 424. IEEE

  24. Kotay K, Rus D, Vona M, McGray C (1998) The self-reconfiguring robotic molecule: Design and control algorithms. In: Proceedings of Workshop on Algorithmic Foundations of Robotics

  25. Krim J (2002) Surface science and the atomic-scale origins of friction. Surf Sci 500:741–758

    Article  Google Scholar 

  26. Kubica J, Rieffel E (2002) Creating a smarter membrane: Automatic code generation for modular self-reconfigurable robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’02), p 793–800. doi:10.1109/ROBOT.2002.1013455

  27. Lahann J, et al. (2003) A reversibly switching surface. Science 299:371–374

    Article  Google Scholar 

  28. Lai SK, Wang YY, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–171. doi:10.1016/j.addr.2008.11.002

    Article  Google Scholar 

  29. Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72:096,601. doi:10.1088/0034-4885/72/9/096601

    Article  MathSciNet  Google Scholar 

  30. Leshansky AM et al. (2007) A frictionless microswimmer. New J Phys 9:145. doi:10.1088/1367-2630/9/5/145

    Article  Google Scholar 

  31. McDonald NV (2005) Diffusion interactions for a pair of reactive spheres. Ph.D. thesis, Univ. of Notre Dame

  32. Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11

    Article  Google Scholar 

  33. Riedel IH et al. (2005) A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309:300–303

    Article  Google Scholar 

  34. Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand-robot swarm. Science 345:795–799. doi:10.1126/science.1254295

    Article  Google Scholar 

  35. Rus D, Vona M (1999) Self-reconfiguration planning with compressible unit modules. In: Proceedings of the Conference on Robotics and Automation (ICRA99), vol. 4, pp. 2513–2520. IEEE

  36. Salemi B, Shen WM, Will P (2001) Hormone controlled metamorphic robots. In: Proceedings of the International Conference on Robotics and Automation (ICRA2001), vol. 4, pp. 4194–4199. IEEE

  37. Santagati GE, Melodia T (2014) Sonar inside your body: Prototyping ultrasonic intra-body sensor networks. In: Proceedings of INFOCOM 2014, pp. 2679–2687. IEEE. doi:10.1109/INFOCOM.2014.6848216

  38. Sitti M et al. (2015) Biomedical applications of untethered mobile milli/microrobots. Proc IEEE 103:205–224. doi:10.1109/JPROC.2014.2385105

    Article  Google Scholar 

  39. Vanossi A et al. (2013) Modeling friction: From nanoscale to mesoscale. Rev Mod Phys 85:529–552. doi:10.1103/RevModPhys.85.529

    Article  Google Scholar 

  40. Werfel J, Petersen K, Nagpal R (2014) Enzyme kinetics, past and present. Science 343:754–758. doi:10.1126/science.1245842

    Article  Google Scholar 

  41. White FM (2005) Viscous Fluid Flow, 3rd edn, McGraw-Hill

  42. Yang J et al. (2013) Observation of high-speed microscale superlubricity in graphite. Phys Rev Lett 110:255,504. doi:10.1103/PhysRevLett.110.255504

    Article  Google Scholar 

  43. Yim M, Duff DG, Roufas KD (2000) PolyBot: A modular reconfigurable robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA2000), p 514–520

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tad Hogg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogg, T. Energy dissipation by metamorphic micro-robots in viscous fluids. J Micro-Bio Robot 11, 85–95 (2016). https://doi.org/10.1007/s12213-015-0086-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-015-0086-3

Keywords

Navigation