Skip to main content

Advertisement

Log in

Characterization of low-enthalpy geothermal resources and evaluation of potential contaminants

  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

The use of renewable resources alternative to fossil fuels, thus contributing to the reduction of CO2 emissions, requires the assessment of eventual negative impacts on the environment. This study was devoted to the characterization of low-enthalpy geothermal resources and the potential contamination of geothermal effluents into the aquatic system. Thirty-five groundwater samples were collected in the Campidano (southern Sardinia, Italy), an area showing heat flow anomalies and thermal occurrences. Hydrogeological features inferred by literature were implemented by data acquired at each sampling site. Physical–chemical parameters, major, minor and trace components in groundwater were determined, together with the isotopic composition of the water. Six hydrogeological units with variable permeability were identified. According to geological and hydrogeological modeling, four of the six units appeared hydraulically connected, although not everywhere. The predominant groundwater flow was seen from north-east to south-west. The water temperature was in the range 17–42 °C, pH ranged from 6.7 to 8.6, dissolved oxygen varied from < 0.2 to 7.8 mg L−1 and electrical conductivity from 0.8 to 10 mS cm−1. Predominant cations were Na+ and Ca2+, predominant anions were either Cl or HCO3. The more saline waters showed anyhow a marked Na+–Cl chemical composition. Most waters were found either at near equilibrium with respect to calcite or slightly saturated, but under saturated with respect to gypsum. Isotopic values of δ2H and δ18O in the water samples indicated a meteoric origin. Particular attention was paid to potential contaminants, which should be evaluated when thermal waters are used in spa treatments and balneology. Concentrations of NO3 and NH4+ above the Italian limits established for drinking water (50 mg L−1 and 0.5 mg L−1, respectively) occurred in one oxygenated groundwater and five reduced groundwater samples, respectively. Fluoride concentrations exceeding the Italian limit of 1.5 mg L−1 were observed in three groundwater samples. The mean value of As was 3.2 µg L−1, with one groundwater exceeding the 10 µg L−1 of the legal value. The groundwater with the highest temperature (42 °C), an artesian well, was characterized by relatively high concentrations of Cl, F, Li, B, Ge, Rb, Mo, Cs, W, Sc and Ga. Overall results allowed to identify the area most suitable for geothermal exploitation. Deep fluids, probably located at a depth > 1 km, would rise up along faults or fractured zones in the granitic–metamorphic Paleozoic basement. Maximum temperatures of 90 °C in the thermal reservoir were estimated by silica and Na–K–Ca geothermometers. The δ18O enrichment shift occurring at high temperature was not observed. Due to high concentrations of some contaminants (e.g. Mo, W, B, F), geothermal effluents derived from exploitation should be either re-injected or treated before discharge for avoiding the contamination of aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Angelone M, Gasparini C, Guerra M, Lombardi S, Pizzino L, Quattrocchi F, Sacchi E, Zuppi GM (2005) Fluid geochemistry of the Sardinian Rift-Campidano Graben (Sardinia, Italy): fault segmentation, seismic quiescence of geochemically ‘active’ faults, and new constraints for selection of CO2 storage sites. Appl Geochem 20:317–340

    Article  CAS  Google Scholar 

  • Ármannssòn H (2012) Geochemical aspects of geothermal utilization. In: Sayigh A (ed) Comprehensive renewable energy, vol 7. Elsevier, Oxford, pp 95–168

    Google Scholar 

  • Balia R, Ciminale M, Loddo M, Pecorini G, Ruina G, Trudu R (1984) Gravity survey and interpretation of Bouguer anomalies in the Campidano geothermal area (Sardinia, Italy). Geothermics 13:333–347

    Article  Google Scholar 

  • Balia R, Cidu R, Pala A, Ranieri G, Serra S (1985) Studio idrogeologico e geochimico delle sorgenti termali di S. Maria is Acquas presso Sardara (Sardegna). In: Atti V Congr. Intern. Acque Sotterranee, Taormina, pp 1–24 (in Italian)

  • Balia R, Ciminale M, Loddo M, Patella D, Pecorini G, Tramacere A (1991) A new geophysical contribution to the study of the Campidano geothermal area (Sardinia, Italy). Geothermics 20:147–163

    Article  CAS  Google Scholar 

  • Bertorino G, Caboi R, Caredda AM, Cidu R, Fanfani L, Panichi C, Sitzia R, Zuddas P (1982a) Idrogeochimica del Graben del Campidano. Report CNR N. CNR-PFE-SPEG-RF-10, CNR Pisa, pp 104–123 (in Italian)

  • Bertorino G, Caboi R, Caredda AM, Cidu R, Fanfani L, Sitzia R, Zuddas P (1982b) Alcune considerazioni sulla geochimica delle acque del Campidano. Report CNR N. CNR-PFE-SPEG-RF-10, CNR Pisa, pp 133–143 (in Italian)

  • Biddau R, Cidu R, Lorrai M, Mulas MG (2017) Assessing background values of chloride, sulfate and fluoride in groundwater: a geochemical-statistical approach at a regional scale. J Geochem Exploration 181:243–255. https://doi.org/10.1016/j.gexplo.2017.08.002

    Article  CAS  Google Scholar 

  • Caboi R, Cidu R, Fanfani L, Pecorini G, Zuddas P (1983) Preliminary geologic and geochemical data for the evaluation of geothermal potential in Sardinia. In: Strub AS, Ungemach P (eds) European geothermal update. Reidel, Kufstein, pp 206–213

    Google Scholar 

  • Caboi R, Cidu R, Fanfani L, Zuddas P, Zanzari AR (1993) Geochemistry of the high-PCO2 waters in Logudoro, Sardinia, Italy. Appl Geochem 8:153–160

    Article  CAS  Google Scholar 

  • Carmignani L, Todisco A, Petrone F, Bencini R, Cirese E, Ferri F, Funiciello R, Giardini G, Giusta E, Gisotti G, Graziano R, Pantaleone NA, Rossi M, Scalise AR, Sciotti M, Ventura G, Bianchi M, Vatovec ML (2001) Geologia della Sardegna—Note Illustrative della Carta Geologica della Sardegna a scala 1:200.000—Memorie descrittive della Carta Geologica d’Italia - LX. Ed. Istituto Poligrafico e Zecca dello Stato, Roma (in Italian)

  • CASMEZ (1976) Studio organico delle risorse idriche sotterranee della Sardegna—II fase [Study of groundwater in Sardinia—2nd phase], Università degli Studi di Sassari, Cassa per il Mezzogiorno, Prog. Cassa 25/96 (in Italian)

  • Casula G, Cherchi A, Montadert L, Murru M (2001) The cenozoic graben system of Sardinia (Italy): geodynamic evolution from new seismic and field data. Mar Petrol Geol 18:863–888

    Article  Google Scholar 

  • Cataldi R, Mongelli F, Squarci P, Taffi L, Zito G, Calore C (1995) Geothermal ranking of Italian territory. Geothermics 24:115–119

    Article  Google Scholar 

  • Cherchi A, Montadert L (1982) Oligo-Miocene rift of Sardinia and the early history of the Western Mediterranean Basin. Nature 298:736–739

    Article  Google Scholar 

  • Cidu R (1996) Inductively coupled plasma—mass spectrometry and—optical emission spectrometry determination of trace elements in water. At Spectrosc 17:155–162

    CAS  Google Scholar 

  • Cidu R, Biagini C, Fanfani L, La Ruffa G, Marras I (2001) Mine closure at Monteponi (Italy): effect of the cessation of dewatering on the quality of shallow groundwater. Appl Geochem 16:489–502

    Article  CAS  Google Scholar 

  • Cidu R, Caboi R, Biddau R, Petrini R, Slejko F, Flora O, Aiuppa A, Parello F, Valenza M (2008) Caratterizzazione idrogeochimica ed isotopica e valutazione della qualità delle acque superficiali e sotterranee campionate nel Foglio 549 Muravera. In: Ottonello G (ed) GEOBASI. Pacini Editore, Pisa, pp 149–183 ISBN 978-88-7781-926-02008 (in Italian)

    Google Scholar 

  • Cocco F, Funedda A, Patacca E, Scandone P (2012) Preliminary note on the structural setting of the central-southern Plio-Quaternary Campidano graben (Sardinia). Rend Online Soc Geol It 22:55–57

    Google Scholar 

  • Cocco F, Funedda A, Patacca E, Scandone P (2013) Plio-Pleistocene extensional tectonics in the Campidano graben (SW Sardinia, Italy): preliminary note. Rend Online Soc Geol It 29:31–34

    Google Scholar 

  • Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560

    Article  CAS  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  CAS  Google Scholar 

  • D'Amore F, Fancelli R, Caboi R (1987) Observations on the application of chemical geothermometers to some hydrothermal systems in Sardinia. Geothermics 16:271–282

    Article  CAS  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Egger A, Demartin M, Ansorge J, Banda E, Maistrello M (1988) The gross structure of the crust under Corsica and Sardinia. Tectonophysics 150:363–389

    Article  Google Scholar 

  • Faccenna C, Speranza F, D'Ajello CF, Mattei G, Oggiano G (2002) Extensional tectonics on Sardinia (Italy): insights into the arc-back-arc transitional regime. Tectonophysics 356:213–232

    Article  Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  CAS  Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Article  CAS  Google Scholar 

  • Frau F (1993) Selected trace elements in groundwaters from the main hydrothermal areas of Sardinia (Italy) as a tool in reconstructing water-rock interaction. Miner Petrogr Acta 36:281–296

    CAS  Google Scholar 

  • Frau F (1994) A new hydrothermal manifestation in the Campidano graben, Italy: the Su Campu borehole (Monastir). Miner Petrogr Acta 37:155–162

    CAS  Google Scholar 

  • Frau F, Cidu R, Casu M, Soriga A (2019) Assessing arsenic sources in landfill areas: a case study in Sardinia. Ital J Geosci 138:116–123. https://doi.org/10.3301/IJG.2018.30

    Article  Google Scholar 

  • G.U.R.I.—Gazzetta Ufficiale della Repubblica Italiana (2006) Decreto legislativo 3 aprile 2006, n. 152 Norme in materia ambientale. Gazzetta Ufficiale della Repubblica Italiana n. 88 del 14–4–2006, suppl. ord. n. 96, Roma (in Italian)

  • Giggenbach WF (1988) Geothermal solute equilibria: derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  CAS  Google Scholar 

  • Giustini F, Brilli M, Patera A (2016) Mapping oxygen stable isotopes of precipitation in Italy. J Hydrol Reg Stud 8:162–181

    Article  Google Scholar 

  • Guerra I (1981) Struttura crostale della Sardegna sulla base dei dati sismici e gravimetrici. In: Proc. 1st meeting GNGTS, CNR, Roma (in Italian)

  • Li Z-W, Feng X-T, Zhang Y-J, Xu T-F (2018) Feasibility study of developing a geothermal heating system in naturally fractured formations: reservoir hydraulic properties determination and heat production forecast. Geothermics 73:1–15

    Article  Google Scholar 

  • Loddo M, Mongelli F, Pecorini G, Tramacere A (1982) prime misure di flusso di calore in Sardegna. CNR-PFE-SPEG-RF10, Pisa, pp 181–209 (in Italian)

  • Lund JW, Boyd TL (2016) Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60:66–93

    Article  Google Scholar 

  • Manzella A, Bonciani R, Allansdottir A, Botteghi S, Donato A, Giamberini S, Lenzi A, Paci M, Pellizzone A, Scrocca D (2018) Environmental and social aspects of geothermal energy in Italy. Geothermics 72:232–248

    Article  Google Scholar 

  • Minissale AA (2018) A simple geochemical prospecting method for geothermal resources in flat areas. Geothermics 72:258–267

    Article  Google Scholar 

  • Noorollahi Y, Shabbir MS, Siddiqi AF, Ilyashenko EA (2019) Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy. Geothermics 77:257–266

    Article  Google Scholar 

  • Nordstrom DK (1977) Thermochemical redox equilibria of ZoBell's solution. Geochim Cosmochim Acta 41:1835–1841

    Article  CAS  Google Scholar 

  • Pala A, Pecorini G, Porcu A, Serra S (1982) Geologia e idrogeologia del Campidano. In: Ricerche Geotermiche in Sardegna, CNR-PFE-SPEG-RF10, CNR-Pisa, pp 87–103 (in Italian)

  • Parkhurst DL, Appelo CAJ (1999) PHREEQC version 2. Water-Resources Investigations Report 99-4259. USGS, Denver

  • Shortall R, Davidsdottir B, Axelsson G (2015) Geothermal energy for sustainable development: a review of sustainability impacts and assessment frameworks. Renew Sustain Energy Rev 44:391–406

    Article  Google Scholar 

  • Simler R (2012) Manuel pour DIAGRAMMES, Water Software Quality Hydrochemistry. Laboratorie d'Hydrogéologie d'Avignon, France. https://www.lha.univ-avignon.fr/Fichiers/Manuel%2520DIAGRAMMES.pdf

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva (ISBN: 978 92 4 154815 1)

    Google Scholar 

  • Yasukawa K, Kubota H, Soma N, Noda T (2018) Integration of natural and social environment in the implementation of geothermal projects. Geothermics 73:111–123

    Article  Google Scholar 

  • Yousefi H, Roumi S, Ármannsson H, Noorollahi Y (2019) Cascading uses of geothermal energy for a sustainable energy supply for Meshkinshahr City, Northwest. Iran Geothermics 79:152–163

    Article  Google Scholar 

Download references

Acknowledgements

Research funded by the Fondazione di Sardegna (Project GETHERE, grant number F71/17000190002, Scientific Responsible P. Valera) and the Autonomous Region of Sardinia (Regional Law 7/2007 CRP 2_114_1, Scientific Responsible L. Fanfani and F. Frau). Thanks to Dr Carlo Calledda who contributed in field and lab work during his master thesis in Geological Sciences at the University of Cagliari, and Dr Claudio Arras for drawing Fig. 1. Thanks to the Editor and Reviewers for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Cidu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frau, F., Cidu, R., Ghiglieri, G. et al. Characterization of low-enthalpy geothermal resources and evaluation of potential contaminants. Rend. Fis. Acc. Lincei 31, 1055–1070 (2020). https://doi.org/10.1007/s12210-020-00950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00950-6

Keywords

Navigation