Skip to main content
Log in

Magnetic solitons in binary mixtures of Bose–Einstein condensates

  • Classical and quantum plasmas
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Solitons, that is stable localized perturbations of a medium, are the topological excitations of nonlinear systems. They can be stable and live for a long time and may have promising applications for telecommunication. The basic one is the Tsuzuki dark soliton, which can be described by an analytical solution of the Gross–Pitaevskii equation (GPE). Ultracold Bose–Einstein condensed (BEC) gases are an important example for the investigation of solitons which can be created by phase and density imprinting. New possibilities arise in mixtures of different hyperspin states of ultra-cold gases, where the so-called magnetic solitons (MS), that is localized magnetized regions, can exist. We will see that these MS permit an analytical description. New peculiar phenomena can take place in the presence of a coherent Rabi coupling between the spin states, where two different type of solitons exist—so-called \(2\pi \) and \(0\pi \) solitons. \(2\pi \) solitons, unlike the usual Tsuzuki solitons, have at small velocity a positive effective mass and consequently do not undergo the snake instability. Solitary waves can oscillate in BEC gases along elongated traps. The theoretical description of this motion requires the knowledge of the effective soliton mass and the effective number of particles in the soliton. These quantities are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov GV, Lewenstein M (1999) Dark solitons in Bose–Einstein condensates. Phys Rev Lett 83:5198

    Article  CAS  Google Scholar 

  • Busch Th, Anglin JR (2000) Motion of dark solitons in trapped Bose–Einstein condensates. Phys Rev Lett 84:2298

    Article  CAS  Google Scholar 

  • Calderaro L, Fetter AL, Massignan P, Wittek P (2017) Vortex dynamics in coherently coupled Bose–Einstein condensates. Phys Rev A 95:023605

    Article  Google Scholar 

  • Danaila I, Khamehchi MA, Gokhroo V, Engels P, Kevrekidis PG (2016) Vector dark-antidark solitary waves in multicomponent Bose–Einstein condensates. Phys Rev A 94:053617

    Article  Google Scholar 

  • Denschlag J, Simsarian JE, Feder DL, Clark Charles W, Collins LA, Cubizolles J, Deng L, Hagley EW, Helmerson K, Reinhardt WP, Rolston SL, Schneider BI, Phillips WD (2000) Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287:97

    Article  CAS  Google Scholar 

  • Emori S, Bauer U, Ahn S-M, Martinez E, Beach GSD (2013) Currentdriven dynamics of chiral ferromagnetic domain walls. Nat Mater 12:611

    Article  CAS  Google Scholar 

  • Kamchatnov AM, Pitaevskii LP (2008) Stabilization of solitons generated by a supersonic flow of Bose–Einstein condensate past an obstacle. Phys Rev Lett 100:160402

    Article  CAS  Google Scholar 

  • Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr LD, Castin Y, Salomon C (2002) Formation of a matter-wave bright soliton. Science 296:1290

    Article  CAS  Google Scholar 

  • Kibble TWB (1976) Topology of cosmic domains and strings. J Phys A Math Gen 9:1387

    Article  Google Scholar 

  • Knoop S, Schuster T, Scelle R, Trautmann A, Appmeier J, Oberthaler MK, Tiesinga E, Tiemann E (2011) Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium. Phys Rev A 83:042704

    Article  CAS  Google Scholar 

  • Konotop VV, Pitaevskii L (2004) Landau dynamics of a grey soliton in a trapped condensate. Phys Rev Lett 93:240403

    Article  CAS  Google Scholar 

  • Mollenauer LF, Stolen RH, Gordon JP (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett 45:1095

    Article  Google Scholar 

  • Pitaevskii LP (2016) Dynamics of solitary waves in ultracold gases in terms of observable quantities. Phys Uspekhi 59(10):1028

    Article  CAS  Google Scholar 

  • Pitaevskii LP, Stringari S (2016) Bose–Einstein condensation and superluidity. Oxford University Press, New York

    Book  Google Scholar 

  • Qu C, Pitaevskii LP, Stringari S (2016) Magnetic solitons in binary Bose–Einstein condensate. Phys Rev Lett 116:160402

    Article  CAS  Google Scholar 

  • Qu C, Tulutki M, Stringari S, Pitaevskii LP (2017) Magnetic solitons in Rabi-coupled Bose–Einstein condensates. Phys Rev A 95:033614

    Article  Google Scholar 

  • Ryutova M, Shine R, Title A, Sakai JI (1998) A possible mechanism for the origin of emerging flux in the sunspot moat. Astrophys J 492:402

    Article  Google Scholar 

  • Son DT, Stephanov MA (2002) Domain walls of relative phase in twocomponent Bose–Einstein condensates. Phys Rev A 65:063621

    Article  CAS  Google Scholar 

  • Su WP, Schrieffer JR, Heeger AJ (1979) Solitons in polyacetylene. Phys Rev Lett 42:1698

    Article  CAS  Google Scholar 

  • Tsuzuki T (1971) Nonlinear waves in the Pitaevskii–Gross equation. J Low Temp Phys 4:441

    Article  Google Scholar 

  • Tylutki M, Pitaevskii LP, Recati A, Stringari S (2016) Coninement and precession of vortex pairs in coherently coupled Bose–Einstein condensates. Phys Rev A 93:043623

    Article  CAS  Google Scholar 

  • Usui A, Takeuchi H (2015) Rabi-coupled countersuperflow in binary Bose–Einstein condensates. Phys Rev A 91:063635

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev P. Pitaevskii.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This contribution is the written, peer-reviewed version of a paper presented at the conference “Classical and quantum plasmas: matter under extreme conditions” held at Accademia Nazionale dei Lincei in Rome on April 5–6, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitaevskii, L.P. Magnetic solitons in binary mixtures of Bose–Einstein condensates. Rend. Fis. Acc. Lincei 30, 269–276 (2019). https://doi.org/10.1007/s12210-019-00797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-019-00797-6

Keywords

Navigation