Skip to main content

Advertisement

Log in

Tyrrhenian sea level at 2000 BP: evidence from Roman age fish tanks and their geological calibration

  • Satellite Positioning for Geosciences
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Following the pioneering work of Schmiedt et al. (1972) on establishing the level of the Tyrrhenian Sea in Antiquity, a number of studies have examined this evidence from Roman Period fish tanks but with significantly different outcomes due primarily to different interpretations of the functional level of these pools at the time of their construction. As part of a longer term project to understand the causes of sea-level change around the Italian coast, we have reexamined and resurveyed 12 well-documented fish tanks, all based on the same construction principles, from the Tyrrhenian coast (between Formia and Orbetello) for which it can be established that they were in open contact with the sea at the time of operation. The structural features that tidally control the exchange of water used to define the ancient local sea level are identified as the channel thresholds, the sluice gate and sliding post positions, and the lowest level crepido. These are consistent for all the tanks examined, permitting the local sea-level change over the past 2000 years to be established at each location with a precision of ± 20 cm and against which other coastal archaeological features can be calibrated. We conclude that published local sea levels that are based on the present-day elevations of the foundations of protective walls constructed around the tanks and lie ~ 50 cm above our inferred levels are inconsistent with the successful functioning of the water exchange and have to be rejected. In one case, for Santa Liberata, we have been able to calibrate our interpretation against sedimentary evidence from the nearby Orbetello Lagoon that confirm our interpretation of the functional control level of the tanks and we conclude that the accuracy of our local sea levels is also ± 20 cm. The causes of sea-level change along this section of the coast are several, including land motion driven by tectonic and glacio-isostatic processes and any change in ocean volume. The individual estimates for the observed local sea levels range from − 0.9 to − 1.5 m with a mean value of − 1.22 ± 0.20 m. These values show that the spatial variability of the local levels is small and consistent with model-inferences of the glacio-isostatic process that indicate near-constant contributions for this section of coast and with tectonic inference from the elevations of the Last Interglacial shoreline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antonioli F, Anzidei M, Auriemma R, Gaddi D, Furlani S, Lambeck K, Orrù P, Solinas E, Gaspari A, Karinja S, Kovačić V, Surace L (2007) Sea level change during Holocene from Sardinia and northeastern Adriatic (Central Mediterranean sea) from archaeological and geomorphological data. Quat Sci Rev 26:2463–2486

    Article  Google Scholar 

  • Antonioli F, Ferranti L, Fontana A, Amorosi A, Bondesan A, Braitenberg C, Dutton A, Fontolan G, Furlani S, Lambeck K, Mastronuzzi G, Monaco C, Spada G, Stocchi P (2009) Holocene relative sea-level changes and vertical movements along the Italian coastline. Quat Int 206:102–133

    Article  Google Scholar 

  • Antonioli F, Lo Presti V, Rovere A, Ferranti L, Anzidei M, Furlani S, Mastronuzzi G, Orru PE, Scicchitano G, Sannino G, Spampinato CR, Pagliarulo R, Deiana G, De Sabata E, Sansò P, Vacchi M, Vecchio A (2015) Tidal notches in Mediterranean sea: a comprehensive analysis. Quat Sci Rev 119:66–84

    Article  Google Scholar 

  • Antonioli F, Anzidei M, Amorosi A, Lo Presti V, Mastronuzzi G, Deiana G, De Falco G, Fontana A, Fontolan G, Lisco S, Marsico A, Moretti M, Orrù PE, Sannino GM, Serpelloni E, Vecchio A (2017) Sea-level rise and potential drowning of the Italian coastal plains: flooding risk scenarios for 2100. Quat Sci Rev 158:29–43

    Article  Google Scholar 

  • Anzidei M, Antonioli F, Benini A, Gervasi A, Guerra I (2013) Evidence of vertical tectonic uplift at Briatico (Calabria, Italy) inferred from Roman age maritime archaeological indicators. Quat Int 288:158–167

    Article  Google Scholar 

  • Anzidei M, Lambeck K, Antonioli F, Furlani S, Mastronuzzi G, Serpelloni E, Vannucci G (2014) Coastal structure, sea-level changes and vertical motion of the land in the Mediterranean. In: Martini IP (eds) Sedimentary coastal zones from high to low latitudes: similarities and differences. Special publications 388. The Geological Society, London. https://doi.org/10.1144/SP388.20

    Chapter  Google Scholar 

  • Anzidei M, Bosman A, Carluccio R, Casalbore D, D’Ajello Caracciolo F, Esposito A, Nicolosi I, Pietrantonio G, Vecchio A, Carmisciano C, Chiappini M, Chiocci FL, Muccini F, Sepe V (2017) Flooding scenarios in coastal volcanic areas due to land subsidence and sea level rise: a case study for Lipari Island (Italy). Terra Nova 29:44–51. https://doi.org/10.1111/ter.12246

    Article  Google Scholar 

  • Aucelli P, Cinque A, Mattei G, Pappone G (2017) Historical sea level changes and effects on the coasts of Sorrento Peninsula (Gulf of Naples): new constrains from recent geoarchaeological investigations. Palaeogeogr Palaeoclimatol Palaeoecol 463(2016):112–125

    Google Scholar 

  • Auriemma R, Solinas E (2009) Archaeological remains as sea level change markers: a review. Quat Int 206:1–13

    Article  Google Scholar 

  • Caputo M, Pieri L (1976) Eustatic variation in the last 2000 years in the Mediterranean. J Geophys Res 81(1976):5787–5790

    Article  Google Scholar 

  • Cathles LM (1975) The viscosity of the Earth’s mantle. Princeton University Press, Princeton

    Google Scholar 

  • Chiappella VG (1965) Esplorazione della cosiddetta “Piscina di Lucullo” sul lago di Paola. Atti Accademia Nazionale dei Lincei. Notizie degli scavi di Antichità, Serie 8 (19):46–160

  • Columella, De Re Rustica, XVII

  • Evelpidou N, Pirazzoli P, Vassilopoulos A, Spada G, Ruggieri G, Tomasin A (2012) Late Holocene Sea level reconstructions based on observations of Roman fish tanks, Tyrrhenian coast of Italy. Geoarchaeology 27:259–277

    Article  Google Scholar 

  • Felici E (1993) Osservazioni sul porto neroniano di Anzio e sulla tecnologia romana delle costruzioni portuali in calcestruzzo, in Archeologia subacquea. Studi ricerche e documenti I:71–104

    Google Scholar 

  • Felici E (1998) La ricerca sui porti romani in cementizio: metodi e obiettivi. In: Volpe G. (a cura di), Come opera l'archeologo sott'acque : storie delle acque, VIII ciclo di lezioni sulla ricerca applicata in archeologia. Edizioni all'insegna del Giglio, Firenze 275-340

  • Felici E (2004) Ricerche sulle tecniche costruttive dei porti romani. Rivista di topografia antica XVI II:59–84

    Google Scholar 

  • Ferranti L, Antonioli F, Amorosi A, Dai Pra G, Mastronuzzi G, Mauz B, Monaco C, Orrù P, Pappalardo M, Radtke U, Renda P, Romano P, Sansò P, Verrubbi V (2006) Elevation of the last interglacial highstand in Italy: a benchmark of coastal tectonics. Quat Int 145–146:30–54

    Article  Google Scholar 

  • Gazzetti C, Loy A, Rossi S, Sarandrea P (2000) Atlante delle sorgenti della provincia di, Latina edn. Gangemi, Roma

    Google Scholar 

  • Jackson MD, Mulcahy SR, Chen H, Li Y, Li Q, Cappelletti P, Wenk HR (2017) Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. Am Mineral 102:1435–1450

    Article  Google Scholar 

  • Juvenale (1992) The satires, trans. Oxford University Press, Niall Rudd, Oxford

    Google Scholar 

  • Lambeck K (2014) Of moon and land, ice and strand: sea level during glacial cycles. The annual Balzan lecture, vol 5. Leo S. Olschki, Florence, pp 13–54

    Google Scholar 

  • Lambeck K, Purcell A (2005) Sea-level change in the Mediterranean since the LGM: model predictions for tectonically stable areas. Quat Sci Rev 24:1969–1988

    Article  Google Scholar 

  • Lambeck K, Purcell A, Johnston P, Nakada M, Yokoyama Y (2003) Water-load definition in the glacio-hydro-isostatic sea-level equation. Quat Sci Rev 22:309–318

    Article  Google Scholar 

  • Lambeck K, Antonioli F, Purcell A, Silenzi S (2004a) Sea-level change along the Italian coast for the past 10,000 years. Quat Sci Rev 23:1567–1598. https://doi.org/10.1016/j.quascirev.2004.02.009

    Article  Google Scholar 

  • Lambeck K, Anzidei M, Antonioli F, Benini A, Esposito E (2004b) Sea level in Roman time in the Central Mediterranean and implications for modern sea level rise. Earth Planet Sci Lett 224:563–575

    Article  CAS  Google Scholar 

  • Lambeck K, Antonioli F, Anzidei M, Ferranti L, Leoni G, Scicchitano G, Silenzi S (2011) Sea level change along Italian coast during Holocene and a projection for the future. Quat Int 232(1–2):250–257. https://doi.org/10.1016/j.quaint.2010.04.026

    Article  Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci 111(43):15296–15303. https://doi.org/10.1073/pnas.1411762111

    Article  CAS  Google Scholar 

  • Lambeck K, Purcell A, Zhao S (2017) The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quat Sci Rev 158:172–210. https://doi.org/10.1016/j.quascirev.2016.11.033

    Article  Google Scholar 

  • Leoni G, Dai Pra G (1997) Variazioni di livello del mare nel tardo Olocene lungo la costa del Lazio in base ad indicatori geoarcheologici. ENEA Tech. Rep. RT/AMB/97/8, Rome

  • Marra F, Anzidei M, Benini A, D’Ambrosio E, Gaeta M, Ventura G, Cavallo A (2016) Petro-chemical features and source areas of volcanic aggregates used in ancient Roman maritime concretes. J Volcanol Geotherm Res 328:59–69

    Article  CAS  Google Scholar 

  • McCann AM (1987) The Roman port end fishery of Cosa. A center of ancient trade. Princeton University Press, Princeton

    Google Scholar 

  • Mertens G, Snellings R, Van Balen K, Bicer-Simsir B, Verlooy P, Elsen J (2009) Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem Concr Res 39(3):233–240

    Article  CAS  Google Scholar 

  • Mitrovica J, Milne GA (2003) On post-glacial sea level: 1, general theory. Geophys J Int 154:253–267

    Article  Google Scholar 

  • Nakada M, Lambeck K (1987) Glacial rebound and relative sea-level variations: a new appraisal. Geophys J R Astron Soc 90:171–224

    Article  Google Scholar 

  • O’Connell RJ (1971) Pleistocene glaciation and the viscosity of the lower mantle. Geophys J 23:299–327

    Article  Google Scholar 

  • Peltier WR (1974) The impulse response of a Maxwell Earth. Rev Geophys 12:649–669

    Article  Google Scholar 

  • Pirazzoli PA (1976) Sea level variations in the northwestern Mediterranean during roman times. Science 194:519–521

    Article  CAS  Google Scholar 

  • Plinius, Naturalis Historia, IX

  • Profumo MC (2007) Archeologia della costa: la situazione marchigiana. Atti congresso Trieste L’archeologia dei paesaggi costieri e le variazioni climatiche 8–10.11.2007. II Progetto Interreg Italia-Slovenia ‘‘AltoAdriatico’’, pp 49–50

  • Schmiedt G, Caputo M, Conta G, Guidi F, Pellegrini M, Pieri L (1972) Il livello antico del mar Tirreno, Testimonianze da resti archeologici. Ed. L.S. Olschki, Firenze

    Google Scholar 

  • Vacchi M, Marriner N, Morhange C, Spada G, Fontana A, Rovere A (2016) Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: sea-level variability and improvements in the definition of the isostatic signal. Earth Sci Rev 155:172–197. https://doi.org/10.1016/j.earscirev.2016.02.002

    Article  Google Scholar 

  • Varro, De Re Rustica III

Download references

Acknowledgements

This research was initially funded by INGV (1998) and the Italian National Research Council (CNR-Agenzia 2000). Further studies have benefitted from funds by the Italian Ministry of Education, University and Research within the National Research program (PRIN 2006; 2011–2013, Vector and RITMARE projects), ENEA, and the Australian National University. We thank Prof. M. Caputo, who first recognized the importance of the Tyrrhenian fish tanks as historical sea-level indicators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Anzidei.

Additional information

This contribution is the written, peer-reviewed version of a paper presented at the Conference “Satellite Geodetic Positioning for Geosciences”, held at the Accademia Nazionale dei Lincei in Rome on March 8, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambeck, K., Anzidei, M., Antonioli, F. et al. Tyrrhenian sea level at 2000 BP: evidence from Roman age fish tanks and their geological calibration. Rend. Fis. Acc. Lincei 29 (Suppl 1), 69–80 (2018). https://doi.org/10.1007/s12210-018-0715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-018-0715-6

Keywords

Navigation