Skip to main content
Log in

Isolation and characterisation of glyphosate-degrading bacteria isolated from local soils in Malaysia

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Glyphosate (N-(phosphonomethyl)glycine) is a herbicide that is used to kill broadleaf weeds and grass, which was developed by the Monsanto company in the early 1970s. However, excessive usage of glyphosate in the agricultural field has led to soil accumulation of the pesticides causing various adverse effects. Due to the concern on its toxicity, an alternative way to ease its effect is through bioremediation, which exploits the ability of microorganisms to degrade harmful toxic substances into less toxic forms. Seven different microbial strains were isolated from glyphosate-contaminated sites in Malaysia. These strains were able to grow in a medium containing glyphosate as the sole phosphorus source. None of the strains were able to grow when glyphosate was introduced as a sole carbon source. Two microbial strains: AQ5–12 and AQ5–13, were found to be the best degraders among them as they were able to withstand up to 12 ml/L of the Roundup® glyphosate formulation and 200 ppm of analytical grade glyphosate. Based on 16s rRNA and biochemical tests, AQ5–12 was identified as Burkholderia vietnamiensis, whereas AQ5–13 was identified as Burkholderia sp. AQ5–12, with the latter possessing better degradation capability compared to AQ5–13 with utilisation of 91 and 74% of 50 ppm glyphosate, respectively. The best optimum degradation conditions were seen at the temperature of 30 °C and a pH of 6 for both strains. Based on these results, both strains displayed their potential to be used in the bioremediation of glyphosate-contaminated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad SA, Ahamad KNEK, Johari WLW et al (2014) Kinetics of diesel degradation by an acrylamide-degrading bacterium. Rend Fis Acc Lincei 25:505–512. doi:10.1007/s12210-014-0344-7

    Article  Google Scholar 

  • Balthazor TM, Hallas LE (1986) Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol 51:432–434

    CAS  Google Scholar 

  • Bazot S, Lebeau T (2008) Simultaneous mineralization of glyphosate and diuron by a consortium of three bacteria as free-and/or immobilized-cells formulations. Appl Microbiol Biotechnol 77:1351–1358

    Article  CAS  Google Scholar 

  • Benslama O, Boulahrouf A (2013) Isolation and characterization of glyphosate-degrading bacteria from different soils of Algeria. Afr J Microbiol Res 7:5587–5595. doi:10.5897/AJMR2013.6080

    Article  Google Scholar 

  • Coupe R, Kalkhoff S, Capel P, Gregoire C (2012) Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe. p 5877

  • Dotson SB, Smith CE, Ling CS et al (1996) Identification, characterization, and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982. J Biol Chem 271:25754–25761. doi:10.1074/jbc.271.42.25754

    Article  CAS  Google Scholar 

  • Ermakova IT, Kiseleva NI, Shushkova T et al (2010) Bioremediation of glyphosate-contaminated soils. Appl Microbiol Biotechnol 88:585–594. doi:10.1007/s00253-010-2775-0

    Article  CAS  Google Scholar 

  • Fan J, Yang G, Zhao H et al (2012) Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol 58:263–271

    Article  CAS  Google Scholar 

  • Fazi S, Amalfitano S, Casentini B et al (2016) Arsenic removal from naturally contaminated waters: a review of methods combining chemical and biological treatments. Rend Fis Acc Lincei 27:51–58. doi:10.1007/s12210-015-0461-y

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Glass RL (1981) Colorimetric determination of glyphosate in water after oxidation to orthophosphate. Anal Chem 53:921–923. doi:10.1021/ac00229a048

    Article  CAS  Google Scholar 

  • Goldstein DA, Acquavella JF, Mannion RM, Farmer DR (2002) An analysis of glyphosate data from the California Environmental Protection Agency Pesticide Illness Surveillance Program. J Toxicol Clin Toxicol 40:885–892

    Article  Google Scholar 

  • Iranzo M, Sainz-Pardo I, Boluda R et al (2001) The use of microorganisms in environmental remediation. Ann Microbiol 51(2):135–144

    Google Scholar 

  • Jacob GS, Garbow JR, Hallas LE et al (1988) Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol 54:2953–2958

    CAS  Google Scholar 

  • Jayasumana C, Gunatilake S, Senanayake P (2014) Glyphosate, hard water and nephrotoxic metals: are they the culprits behind the epidemic of chronic kidney disease of unknown etiology in Sri Lanka? Int J Environ Res Public Health 11:2125–2147. doi:10.3390/ijerph110202125

    Article  Google Scholar 

  • Karamba KI, Ahmad SA, Zulkharnain A et al (2016) Optimisation of biodegradation conditions for cyanide removal by Serratia marcescens strain AQ07 using one-factor-at-a-time technique and response surface methodology. Rendiconti Lincei 27:533–545. doi:10.1007/s12210-016-0516-8

    Article  Google Scholar 

  • Khayat ME, Rahman MFA, Shukor MS et al (2016) Characterization of a molybdenum- reducing Bacillus sp. strain khayat with the ability to grow on SDS and diesel. Rend Fis Acc Lincei 27:547–556

    Article  Google Scholar 

  • Kryuchkova YV, Burygin GL, Gogoleva NE et al (2014) Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol Res 169:99–105. doi:10.1016/j.micres.2013.03.002

    Article  CAS  Google Scholar 

  • Li GX, Wu XQ, Ye JR (2013) The characterization of glyphosate degradation by Burkholderia multivorans WS-FJ9. Acta Ecol Sin 33:6885–6894. doi:10.5846/stxb201302250296

  • Lima IS, Baumeier NC, Rosa RT et al (2014) Influence of glyphosate in planktonic and biofilm growth of Pseudomonas aeruginosa. Braz J Microbiol 45:971–975

    Article  CAS  Google Scholar 

  • Liu C-M, McLean PA, Sookdeo CC, Cannon FC (1991) Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol 57:1799–1804

    CAS  Google Scholar 

  • Marc J, Mulner-Lorillon O, Bellé R (2004) Glyphosate-based pesticides affect cell cycle regulation. Biol Cell 96:245–249. doi:10.1016/j.biolcel.2003.11.010

    Article  CAS  Google Scholar 

  • Méndez-Vilas A (2012) Microbes in applied research: current advances and challenges. World Scientific

  • Mesnage R, Moesch C, Grand RLG et al (2012) Glyphosate exposure in a farmer’s family. J Environ Prot 03:1001–1003. doi:10.4236/jep.2012.39115

    Article  CAS  Google Scholar 

  • Moneke AN, Okpala GN, Anyanwu CU (2010) Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. Afr J Biotechnol 9:4067–4074

    CAS  Google Scholar 

  • Moore LJ, Fuentes L, Rodgers JH et al (2012) Relative toxicity of the components of the original formulation of Roundup to five North American anurans. Ecotoxicol Environ Saf 78:128–133. doi:10.1016/j.ecoenv.2011.11.025

    Article  CAS  Google Scholar 

  • Mortensen K (1986) Biological control of weeds with plant pathogens. Can J Plant Pathol 8:229–231. doi:10.1080/07060668609501832

    Article  Google Scholar 

  • Norris MH, Kang Y, Lu D et al (2009) Glyphosate resistance as a novel select-agent-compliant, non-antibiotic-selectable marker in chromosomal mutagenesis of the essential genes asd and dapB of Burkholderia pseudomallei. Appl Environ Microbiol 75:6062–6075. doi:10.1128/AEM.00820-09

    Article  CAS  Google Scholar 

  • Obojska A, Ternan NG, Lejczak B et al (2002) Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68:2081–2084

    Article  CAS  Google Scholar 

  • Romano R, Souza P, Nunes M, Romano M (2012) Perinatal exposure to a commercial formulation of glyphosate reduces the mRNA expression and increases the protein content of beta TSH in the pituitary of male offspring. Endocr Abstr 29:753. http://www.endocrineabstracts.org/ea/0029/ea0029p753.htm

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471. doi:10.1111/j.1574-6976.2006.00018.x

    Article  CAS  Google Scholar 

  • Solomon KR, Anadón A, Carrasquilla G et al (2007) Coca and poppy eradication in Colombia: environmental and human health assessment of aerially applied glyphosate. Rev Environ Contam Toxicol 190:43–125

    Article  CAS  Google Scholar 

  • Talbot HW, Johnson LM, Munnecke DM (1984) Glyphosate utilization by Pseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Curr Microbiol 10:255–259. doi:10.1007/BF01577137

    Article  CAS  Google Scholar 

  • Tiago I, Teixeira I, Silva S et al (2004) Metabolic and genetic diversity of mesophilic and thermophilic bacteria isolated from composted municipal sludge on poly-ε-caprolactones. Curr Microbiol 49:407–414. doi:10.1007/s00284-004-4353-0

    Article  CAS  Google Scholar 

  • Wahid K, Al-Qodah Z, Lafi (2006) Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions. J Hazard Mater 137:489–497. doi:10.1016/j.jhazmat.2006.02.027

    Article  Google Scholar 

  • Yaacob NS, Mohamad R, Ahmad SA et al (2016) The influence of different modes of bioreactor operation on the efficiency of phenol degradation by Rhodococcus UKMP-5M. Rend Fis Acc Lincei 27:749–760

    Article  Google Scholar 

  • Zboińska E, Lejczak B, Kafarski P (1992) Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens. Appl Environ Microbiol 58:2993–2999

    Google Scholar 

Download references

Acknowledgements

This work was supported by PUTRA-IPM (9486100). We also thank Universiti Putra Malaysia for providing a GRF scholarship to Mr. Motharasan Manogaran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aqlima Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manogaran, M., Shukor, M.Y., Yasid, N.A. et al. Isolation and characterisation of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rend. Fis. Acc. Lincei 28, 471–479 (2017). https://doi.org/10.1007/s12210-017-0620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-017-0620-4

Keywords

Navigation