Skip to main content
Log in

Kinetics of diesel degradation by an acrylamide-degrading bacterium

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

In this work, we characterized a novel acrylamide-degrading bacterium with the ability to degrade diesel. Tentatively, the isolate was identified as Burkholderia sp. strain DRY27 and was shown to have increased growth rate on media supplemented with 0–3 % (v/v) diesel. We showed that sodium nitrate is the best nitrogen source for the bacterium growth on diesel. The optimal temperature and optimal pH supporting growth on diesel were between 10 and 40 °C and pH 7.5–8.5, respectively. Growth kinetics modeling showed that the Haldane model gave a correlation coefficient value of 0.99 and was better than other kinetic models such as Luong or Monod. Using the Haldane model, the maximum growth rate (µ max) was 0.305 h−1, while the saturation constant or half-velocity constant K s and inhibition constant K i, were 1.171 % (v/v) or 9.95 g/L and 3.215 % (v/v) or 27.32 g/L diesel, respectively. Microbial adhesion to hydrocarbon assay showed that after extraction, 65 % of the bacterium was found in the hexadecane phase indicating that the bacterium was hydrophobic. We showed that diesel components were completely removed based on the reduction in the hydrocarbon peaks monitored by solid-phase microextraction gas chromatography analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel Megeed A, Mueller R (2009) Degradation of long chain alkanes by a newly isolated Pseudomonas frederiksbergensis at low temperature. Biorem Biodiv Bioavail 3:55–60

    Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Atlas RM, Cerniglia CE (1995) Bioremediation of petroleum pollutants. Bioscience 45:1–10

    Article  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC et al (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technol 96:1049–1055

    Article  CAS  Google Scholar 

  • Berita Harian Online (1997) 150 tonnes of diesel spilled in the Straits of Malacca, 6 August 1997

  • Bicca FC, Fleck LC, Antonio M et al (1999) Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev Microbiol 30:231–236

    Article  CAS  Google Scholar 

  • Cavalca L, Gennaro PD, Colombo M et al (2000) Distribution of catabolic pathways in some hydrocarbon-degrading bacteria from a subsurface polluted soil. Res Microbiol 151:877–887

    Article  CAS  Google Scholar 

  • Chapman PJ, Shelton M (1995) Fossil fuel biodegradation, laboratory studies. Environ Health Perspect Supplement 1035:1–7

    Google Scholar 

  • Chayabutra C, Ju LK (2000) Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions. Appl Environ Microbiol 66:493–498

    Article  CAS  Google Scholar 

  • Claassens S, Van Rensburg L, Riedel KJ et al (2006) Evaluation of the efficiency of various commercial products for the bioremediation of hydrocarbon contaminated soil. Environmentalist 26:51–62

    Article  Google Scholar 

  • Davey KR (1994) Review paper, modelling the combined effect of temperature and pH on the rate coefficient for bacterial growth. Int J Food Microbiol 23:295–303

    Article  CAS  Google Scholar 

  • Devereux R, Wilkinson SS (2004) Amplification of ribosomal RNA sequences. In: Kowalchuk GA, de Brujin FJ, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual, 2nd edn. Kluwer, Dordrecht, pp 509–522

    Chapter  Google Scholar 

  • DOE: Malaysia Environmental Quality Report 2006 (2007) Department of Environment, Ministry of Natural Resources and Environment, Malaysia, ISSN 0127-6433

  • Eriksson M, Swartling A, Dalhammar G (1998) Biological degradation of diesel fuel in water and soil monitored with solid-phase microextraction and GC-MS. Appl Microbiol Biotechnol 50:129–134

    Article  CAS  Google Scholar 

  • Espeche ME, MacCormack WP, Fraile ER (1994) Factors affecting growth of an n-hexadecane degrader Acinetobacter species isolated from a highly polluted urban river. Int Biodeter Biodegr 33:187–196

    Article  Google Scholar 

  • Ghazali FM, Rahman RNZA, Salleh AB et al (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeter Biodegr 54:61–67

    Article  CAS  Google Scholar 

  • Gusmanizar N, Shukor Y, Ramli J et al (2008) Isolation and characterization of an acrylamide-degrading Burkholderia sp. STRAIN DR.Y27. J Riset Kimia 2(1):34–44

    Google Scholar 

  • Haldane JBS (1930) Enzymes. Longman Green, London

    Google Scholar 

  • Hong JH, Kim J, Choi OK et al (2005) Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J Microbiol Biotechnol 21:381–384

    Article  CAS  Google Scholar 

  • Kwapisz E, Wszelaka J, Marchut O et al (2008) The effect of nitrate and ammonium ions on kinetics of diesel oil degradation by Gordonia alkanivorans S7. Int Biodeter Biodegr 61:214–222

    Article  CAS  Google Scholar 

  • Lee M, Kim MK, Kwon MJ et al (2005) Effect of the synthesized mycolic acid on the biodegradation of diesel oil by Gordonia nitida strain LE31. J Biosci Bioeng 100:429–436

    Article  CAS  Google Scholar 

  • Lee M, Kim MK, Singleton I et al (2006) Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J Appl Microbiol 100:325–333

    Article  CAS  Google Scholar 

  • Ma Y, Herson DS (2000) The cathecol 2, 3- deoxygenase gene and toluene monooxygenase genes from burkholderia sp. AA1, an isolate capable of degrading aliphatic hydrocarbons and toluene. J Ind Microbiol Biotechnol 25:127–131

    Article  CAS  Google Scholar 

  • Mara K, Decorosi F, Viti C et al (2012) Molecular and phenotypic characterization of Acinetobacter strains able to degrade diesel fuel. Res Microbiol 163:161–172

    Article  CAS  Google Scholar 

  • Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeter Biodegr 46:3–10

    Article  CAS  Google Scholar 

  • Márquez-Rocha FJ, Olmos-Soto J, Concepción Rosano-Hernández M et al (2005) Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates. Int Biodeter Biodegr 55:17–23

    Article  Google Scholar 

  • Michaud L, Di Cello F, Brilli M et al (2004) Biodiversity of cultivable Antarctic psychrotrophic marine bacteria isolated from Terra Nova Bay (Ross Sea). FEMS Microbiol Lett 230:63–71

    Article  CAS  Google Scholar 

  • Mohammed D, Ramsubhag A, Beckles DM (2007) An assessment of the biodegradation of petroleum hydrocarbons in contaminated soil using non-indigenous, commercial microbes. Water, Air, Soil Poll 182:349–356

    Article  CAS  Google Scholar 

  • Mohanti G, Mukherji S (2007) Effect of an emulsifying surfactant on diesel degradation by cultures exhibiting inducible cell surface hydrophobicity. J Chem Technol Biotechnol 82:1004–1011

    Article  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  • Mukherji S, Jagadevan S, Mohapatra G et al (2004) Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field. Bioresour Technol 95:281–286

    Article  CAS  Google Scholar 

  • Mulchandani A, Luong JHT, Groom C (1989) Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697. Appl Microbiol Biotechnol 30:11–17

    CAS  Google Scholar 

  • Rajasekar A, Babu TG, Pandian ST et al (2007) Role of Serratia marcescens ACE2 on diesel degradation and its influence on corrosion. J Ind Microbiol Biotechnol 34:589–598

    Article  CAS  Google Scholar 

  • Rosenberg M (1984) Bacterial adherence to hydrocarbon: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 22:289–295

    Article  CAS  Google Scholar 

  • Shukor MY, Dahalan FA, Jusoh AZ et al (2009a) Characterization of a diesel-degrading strain isolated from a hydrocarbon-contaminated site. J Environ Biol 30:145–150

    CAS  Google Scholar 

  • Shukor MY, Hassan NAA, Jusoh AZ et al (2009b) Isolation and characterization of a Pseudomonas diesel-degrading strain from Antarctica. J Environ Biol 30:1–6

    CAS  Google Scholar 

  • Sinnakkannu S, Abdullah AR, Tahir NM et al (2004) Degradation of metsulfuron methyl in selected Malaysian agricultural soils. Fresenius Environ Bull 13:258–261

    CAS  Google Scholar 

  • Somtrakoon K, Suanjit S, Pokethitiyook P et al (2008) Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013. World J Microbiol Biotechnol 24:523–531

    Article  CAS  Google Scholar 

  • The New Straits Times (2000) Oil Spill closes road for six hours, 3 February 2000

  • The New Straits Times (2001) Tenaga Nasional moves quickly to avert disaster after diesel spill, 23 May 2001

  • Ueno A, Ito Y, Yumoto I et al (2007) Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World J Microbiol Biotechnol 23:1739–1745

    Article  CAS  Google Scholar 

  • Zhukov DV, Murygina VP, Kalyuzhnyi SV (2007) Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus rubber and Rhodococcus erythropolis. Appl Biochem Microbiol 43:587–592

    Article  CAS  Google Scholar 

  • Zoueki CW, Tufenkji N, Ghoshal S (2010) A modified microbial adhesion to hydrocarbons assay to account for the presence of hydrocarbon droplets. J Colloid Interface Sci 344:492–496

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the funds from the ScienceFund, Malaysia, Project No: 02-01-04-SF1473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Termizi Yusof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.A., Ku Ahamad, K.N.E., Wan Johari, W.L. et al. Kinetics of diesel degradation by an acrylamide-degrading bacterium. Rend. Fis. Acc. Lincei 25, 505–512 (2014). https://doi.org/10.1007/s12210-014-0344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0344-7

Keywords

Navigation