Skip to main content
Log in

Selectivity of metal bioaccumulation and its relationship with glutathione S-transferase levels in gonadal and gill tissues of Mytilus galloprovincialis exposed to Ni (II), Cu (II) and Cd (II)

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

In order to identify a metal bioaccumulation marker usable in monitoring programs, we analyzed the metal content in Mytilus galloprovincialis gill and gonadal tissues and its relationship with π-gst expression levels after a laboratory exposure for 24 h to individual chlorides of Ni, Cu, 5, 15, 35 µM and Cd 1,5; 5, 10 µM in artificial sea water. Inductively coupled plasma-mass spectrometry showed that metal content increased in both tissues in an exposure dose-dependent fashion except for Ni in gonadal tissues, where a low value at the highest exposure was observed. Metal bioaccumulation was higher in gill than gonadal tissues as was π-gst expression level, measured by RT-qPCR, except for the highest Cu exposure. In the gonadal tissue, Ni induced the highest π-gst increase resulting in 2.5- and 4-fold at 5 and 35 μM, respectively, while only about twofold for some Cu and Cd dose exposure. In gill tissue, instead Cd produced π-gst dose-dependent increase being 2.3- and 9.6-fold at 5 and 10 μM, respectively. Ni and Cu meanwhile produced 12- and 5-fold expression levels only at the highest concentration used. Mytilus galloprovincialis shows also a selectivity to accumulate the investigated metals, since metal concentration reduction in ASW, after exposure, was 96–97 %; 85.1–90 % and 4.5–10 % for Cd, Cu and Ni, respectively. Finally, π-gst expression levels correlated particularly with the amount of bioaccumulated Cd in gill tissue, indicating π-gst as a potential marker, even if not univocally, of significative cadmium bioaccumulation usable in environmental monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams WJ, Blust R, Borgmann U, Brix KV, DeForest DK, Green AS, Meyer JS, McGeer JC, Paquin PR, Rainbow PS, Wood CM (2011) Utility of tissue residues for predicting effects of metals on aquatic organisms. Integr Environ Assess Manage 7:75–98

    Article  CAS  Google Scholar 

  • Lee KW et al (2008) Expression of glutathione S-transferase (GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals. Aquat Toxicol (Amsterdam, Netherlands) 89:158–166

  • Blackmore G, Wang WX (2003) Inter-population differences in Cd, Cr, Se, and Zn bioaccumulation by the green mussel Perna viridis acclimated at different salinities. Aquat Toxicol 62:205–218

    Article  CAS  Google Scholar 

  • Blanchette B, Feng X, Singh BR (2007) Marine glutathione S-transferase. Mar Biotechnol 23:513–542

    Article  Google Scholar 

  • Brown M, Depledge M (1998) Determinants of trace metal concentrations in marine organisms. In: Langston W, Bebianno M (eds) Metal metabolism in aquatic environments. Springer US, 185-217

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27(7):1451–1474

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2001) The frequency of U-shaped dose responses in the toxicological literature. Toxicol Sci 62:330–338

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exper Toxicol 21:91–97

    Article  CAS  Google Scholar 

  • Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 157:42–48

    Article  CAS  Google Scholar 

  • Canesi L, Viarengo A, Leonzio C, Filippelli M, Gallo G (1999) Heavy metals and glutathione metabolism in mussel tissues. Aquat Toxicol 46:67–76

    Article  CAS  Google Scholar 

  • Canesi L, Barmo C, Fabbri R, Ciacci C, Vergani L, Roch P, Gallo G (2010) Effects of vibrio challenge on digestive gland biomarkers and antioxidant gene expression in Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 152(3):399–406

    Article  Google Scholar 

  • Cantillo AY (1998) Comparison of results of mussel watch programs of the United States and France with worldwide mussel watch studies. Mar Pollut Bull 36(9):712–717

    Article  CAS  Google Scholar 

  • Chapman PM (1997) Is bioaccumulation useful for predicting impacts. Mar Pollut Bull 34:282–283

    Article  CAS  Google Scholar 

  • Chapman PM (2001) The implication of hormesis to ecotoxicology and ecological risk assessment. Hum Exp Toxicol 20(10):499–505

    Article  CAS  Google Scholar 

  • Chatel A, Faucet-Marquis V, Perret M et al (2012) Genotoxicity assessment and detoxification induction in Dreissena polymorpha exposed to benzo[a]pyrene. Mutagenesis 27:703–711

    Article  CAS  Google Scholar 

  • Chatel A, Faucet-Marquis V, Pfohl-Leszkowicz A et al (2014) DNA adduct formation and induction of detoxification mechanisms in Dreissena polymorpha exposed to nitro-PAHs. Mutagenesis 29:457–465

    Article  CAS  Google Scholar 

  • Chavan VR, Muley DV (2014) Effect of heavy metals on liver and gill of fish Cirrhinus mrigala. Int J Curr Microbiol App Sci 3(5):277

    Google Scholar 

  • Das S, Raj R, Mangwani N, Dash H, Chakraborty J (2014) Heavy metals and hydrocarbons: adverse effects and mechanism of toxicity. In: Elsevier (ed) Microbial biodegradation and bioremediation, USA

  • Dondero F, Piacentini L, Banni M, Rebelo M, Burlando B (2005) Quantitative PCR analysis of two molluscan metallothionein genes unveils differential expression and regulation. Gene 345:259–270

    Article  CAS  Google Scholar 

  • Dubovskiy IM, Martemyanov VV, Vorontsova YL, Rantala MJ, Gryzanova EV, Glupov VV (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Physiol C 148:1–5

    CAS  Google Scholar 

  • El-Gendy KS, Radwan MA, Gad AF (2009) In vivo evaluation of oxidative stress biomarkers in the land snail, Theba pisana exposed to copper-based pesticides. Chemosphere 77:339–344

    Article  CAS  Google Scholar 

  • Fang ZQ, Cheung RY, Wong MH (2003) Heavy metals in oysters, mussels and clams collected from coastal sites along the Pearl River Delta, South China. J Environ Sci (China) 15:9–24

    CAS  Google Scholar 

  • Gaber HS (2007) Impact of certain heavy metals on the gill and liver of the Nile tilapia (Oreochromıs Niloticus). Egypt J Aquat Biol Fish 11(2):100

    Google Scholar 

  • Gobas FAPC, Morrison HA (2000) Bioconcentration and biomagnification in the aquatic environment. In: Handbook of property estimation methods for chemicals. CRC Press

  • Goldberg ED (1975) The mussel watch A first step in global marine monitoring. Mar Pollut Bull 6(7):111

    Article  Google Scholar 

  • Goldberg ED, Koide M, Hodge V, Flegal AR, Martin JH (1983) US mussel watch: 1977–1978 results on trace metals and radionuclides. Estuar Coast Shelf Sci 16:69–93

    Article  CAS  Google Scholar 

  • Gong J, Jaiswal R, Mathys JM, Combes V, Grau GE, Bebawy M (2012) Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev 38:226–234

    Article  CAS  Google Scholar 

  • Hagestuen ED, Campiglia AD (1999) New approach for screening polycyclic aromatic hydrocarbons in water samples. Talanta 49:547–560

    Article  CAS  Google Scholar 

  • Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30(6):445–600

    Article  CAS  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 2005(45):51–88

    Article  Google Scholar 

  • Hoarau P, Garello G, Gnassia-Barelli M, Romeo M, Girard JP (2004) Effect of 4-4′ DDE, methoxychlor and imidazole on glutathione S-transferase in the clam Ruditapes decussatus. Aquat Toxicol 68:87–94

    Article  CAS  Google Scholar 

  • Imagawa M, Osada S, Koyama Y, Suzuki T, Hirom PC, Diccianni MB, Morimura S, Muramatsu M (1991) SF-B that binds to a negative element in glutathione transferase P gene is similar or identical to trans-activator LAP/IL6-DBP. Biochem Biophys Res Commun. 179(1):293–300

    Article  CAS  Google Scholar 

  • Kim JH, Dahms HU, Rhee JS, Lee YM, Lee J, Han KN, Lee JS (2010) Expression profiles of seven glutathione S-transferase (GST) genes in cadmium-exposed river pufferfish (Takifugu obscurus). Comp Biochem Physiol Toxicol Pharmacol CBP 151:99–106

    Article  Google Scholar 

  • Kim JH, Liang PW, Williams ST, Cho N, Chueh CC, Glaz MS, Ginger DS, Jen AK (2015) High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater 27(4):695–701

    Article  CAS  Google Scholar 

  • Laborde E (2010) Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 17:1373–1380

    Article  CAS  Google Scholar 

  • Li X, Lin L, Luan T, Yang L, Lan C (2008) Effects of landfill leachate effluent and bisphenol A on glutathione and glutathione-related enzymes in the gills and digestive glands of the freshwater snail Bellamya purificata. Chemosphere 70:1903–1909

    Article  CAS  Google Scholar 

  • Li X, Zhang X, Zhang J, Zhang X, Starkey SR, Zhu KY (2009) Identification and characterization of eleven glutathione S-transferase genes from the aquatic midge Chironomus tentans (Diptera: Chironomidae). Insect Biochem Mol Biol 39:745–754

    Article  CAS  Google Scholar 

  • Lian J, Zhouli L, Wei C, Yin Y, Shuai Y, Xingyuan H (2015) Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica Thunb. J Plant Growth Regul 34(1):13–21

  • Liu W, Lee HK (1998) Quantitative analysis of pesticides by capillary column high performance liquid chromatography combined with solid-phase extraction. Talanta 45:631–639

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Livingstone DR (1998) The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 120:43–49

    Article  CAS  Google Scholar 

  • Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931

    Article  CAS  Google Scholar 

  • Martín-Díaz ML, Jiménez-Tenorio N, Sales D, Delvalls TA (2008) Accumulation and histopathological damage in the clam Ruditapes philippinarum and the crab Carcinus maenas to assess sediment toxicity in Spanish ports. Chemosphere 71(10):1916–1927

    Article  Google Scholar 

  • Meador JP, McCarty LS, Escher BI, Adams WJ (2008) 10th anniversary critical review: the tissue-residue approach for toxicity assessment: concepts, issues, application, and recommendations. J Environ Monit 10(12):1486–1498

    Article  CAS  Google Scholar 

  • Meesun K, In-Young A, Jina C, Hyun P (2009) Molecular cloning and thermal stress-induced expression of a pi-class glutathione S-transferase(GST) in the Antarctic bivalve Laternula elliptica. Comp Biochem Physiol A 152:207–213

    Article  Google Scholar 

  • Mottana A, Carrà S, Doglioni C (2016) Levels of water and soil natural pollutions in Italy. Rend Fis Acc Lincei 27:3–6

    Article  Google Scholar 

  • Myrnes B, Nilsen IW (2007) Glutathione S-transferase from the Icelandic scallop (Chlamys islandica): isolation and partial characterization. Comp Biochem Physiol C Toxicol Pharmacol 144:403–407

    Article  Google Scholar 

  • Nair PM, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol (Amsterdam, Netherlands) 101:550–560

  • Naser HA (2013) Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Pollut Bull 72:6–13

    Article  CAS  Google Scholar 

  • Navaneethaiyer U, Kasthuri SR, Youngdeuk L, Ilson W, CheolYC Jehee L (2012) A novel molluscan sigma-like glutathione S-transferase from Manila clam. Ruditapes philippinarum: cloning, characterization and transcriptional profil-ing. Comp Biochem Physiol C 155:539–550

    Google Scholar 

  • Niti C, Sunita S, Kamlesh K, Rakesh K (2013) Bioremediation: an emerging technology for remediation of pesticides. Res J Chem Environ 17:18

    Google Scholar 

  • Poynton HC, Vulpe C (2009) Ecotoxico genomics: emerging technologies for emerging contaminants. J Am Water Resour Assoc 45:83–96

    Article  CAS  Google Scholar 

  • Poynton HC, Varshavsky JR, Chang B, Cavigiolio G, Chan S, Holman PS, Loguinov AV, Bauer DJ, Komachi K, Theil EC, Perkins EJ, Hughes O, Vulpe CD (2007) Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol 41:1044–1050

    Article  CAS  Google Scholar 

  • Poynton C, Robinson WE, Blalock BJ, Hannigan RE (2014) Correlation of transcriptomic responses and metal bioaccumulation in Mytilus edulis L. reveals early indicators of stress. Aquat Toxicol 155:129–141

    Article  CAS  Google Scholar 

  • Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31:183–192

    Article  CAS  Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    Article  CAS  Google Scholar 

  • Rauf A, Javed M, Ubaidullah M (2009) Heavy metal levels in three major carps (Catla catla, Labeo rohita and Cirrhina mrigala) from the river Ravi, Pakistan. Pakistan Vet J 29:1–24

    Google Scholar 

  • Rave N, Crkvenjakov R, Boedtker H (1979) Identification of procollagen mRNAs transferred to diazobenzyloxymethyl paper from formaldehyde agarose gels. Nucleic Acids Res 6:3559–3567

    Article  CAS  Google Scholar 

  • Shahid A, Ahmad N, Anis M, Alatar AA, Faisal M (2015) Morphogenic responses of Rauvolfia tetraphylla L. cultures to Cu, Zn and Cd ions. Rend Fis Acc Lincei 27(2):369–374

    Article  Google Scholar 

  • Shahidul IM, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48:624–649

    Article  Google Scholar 

  • Sole M, Porte C, Albaiges J (1994) Mixed-function oxygenase system components and antioxidant enzymes in different marine bivalves: its relation with contaminants body burdens. Aquat Toxicol 30:271–283

    Article  CAS  Google Scholar 

  • Stankovic S, Jovic M,. Stankovic Ana R, Katsikas L (2012) Heavy metals in seafood mussels. Risks for human health. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world volume 1: nanotechnology and health risk. Springer, ISBN 978-94-007-2442-6

  • Stebbing ARD (1998) A theory for growth hormesis. Mutat Res 403:249–258

    Article  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  Google Scholar 

  • Veldhoen N, Ikonomou MG, Helbing CC (2012) Molecular profiling of marine fauna: integration of omics with environmental assessment of the world’s oceans. Ecotoxicol Environ Saf 76:23–38

    Article  CAS  Google Scholar 

  • Viarengo A, Canesi L (1991) Mussels as biological indicators of pollution. Biol Cultiv Mussels Aquac 94(2–3):225–243

    Google Scholar 

  • Vijver MG, Elliott EG, Peijnenburg WJ, De Snoo GR (2011) Response predictions for organisms water-exposed to metal mixtures: a meta-analysis. Environ Toxicol Chem 30:1482–1487

    Article  CAS  Google Scholar 

  • Vinagre TM, Alciati JC, Regoli F, Bocchetti R, Yunes JS, Bianchini A, Monserrat JM (2003) Effect of microcystin on ion regulation and antioxidant system in gills of the estuarine crab Chasmagnathus granulatus (Decapoda, Grapsidae). Comp Biochem Physiol C Toxicol Pharmacol 135(1):67–75

    Article  CAS  Google Scholar 

  • Vyshal D (2012) Development of a challenge test for the blue mussel, Mytilus edulis. PHD Thesis. http://lib.ugent.be/fulltxt/…/RUG01-001894276_2012_0001_AC.pdf

  • Wan Q, Whang I, Lee J (2008) Molecular cloning and characterization of three sigma glutathione S-transferases from disk abalone (Haliotis discus discus). Comp Biochem Physiol B Biochem Mol Biol 151(3):257–267

    Article  Google Scholar 

  • Wright P, Mason CF (1999) Spatial and seasonal variation in heavy metals in the sediments and biota of two adjacent estuaries, the Orwell and the Stour, in eastern England. Sci Total Environ 226:139–156

    Article  CAS  Google Scholar 

  • Zhang L, Qiu L, Wu H, Liu X, You L, Pei D, Chen L, Wang Q, Zhao J (2012) Expression profiles of seven glutathione S-transferase (GST) genes from Venerupis philippinarum exposed to heavy metals and benzo[a]pyrene. Comp Biochem Physiol C: Toxicol Pharmacol 155(3):517–527

    CAS  Google Scholar 

Download references

Acknowledgments

We want thank the Cooperative Institute for Regional Development and Implementation of mussels (IRSVEM) Bacoli, in Naples for kindly providing the mussels used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Piscopo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

The research described herein was performed on the marine invertebrate M. galloprovincialis (Lamarck 1819), which is not protected by any environmental agency in Italy. This study was conducted in strict accordance with European (Directive 2010/63) and Italian (Decreto Legislativo n. 116/1992) legislation on the care and use of animals for scientific purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piscopo, M., Ricciardiello, M., Palumbo, G. et al. Selectivity of metal bioaccumulation and its relationship with glutathione S-transferase levels in gonadal and gill tissues of Mytilus galloprovincialis exposed to Ni (II), Cu (II) and Cd (II). Rend. Fis. Acc. Lincei 27, 737–748 (2016). https://doi.org/10.1007/s12210-016-0564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0564-0

Keywords

Navigation