Skip to main content
Log in

Interrelationships among trace metals and metallothionein in digestive glands and gills for field samples of Merceneria merceneria

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

More widespread use of metallothionein (MT) as a biomarker for trace metal pollution continues to be partly dependent on obtaining reliable baseline concentrations and identifying increased induction of the enzyme with only modest increases in metal concentrations. In this study, new data on metals and MT levels in whole clams tissue, gills, and digestive glands from field samples and in sediments are presented. Concentrations of Cd, Cu, Fe, and Zn in depurated (24 h) clam samples of digestive glands, gills, and the whole clam Merceneria merceneria from the Indian River Lagoon, Florida, varied with location and showed moderate to strong correlations among Zn, Cu, and Fe. Concentrations of metallothionein (dry wt.) ranged from 34─270 μg/g in gills and 150–440 μg/g in digestive glands and showed moderate to strong correlations between organs and with metal concentrations in those organs. Observed trends support increased synthesis of metallothionein with only moderate increases in metal values and in response to statistically higher sediment metal concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aly W, Williams ID, Hudson MD (2014) Limitation of metallothioneins in common cockles (Cerastoderma edule) and sponges (Halicloma oculta) as biomarkers of metal contamination in a semi-enclosed coastal area. Sci Total Environ 473-474:391–397

    Article  CAS  Google Scholar 

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aqua Toxicol 76:160–202

    Article  CAS  Google Scholar 

  • Bebianno MJ, Serafim MA (2003) Variation of metal and metallothionein concentrations in natural populations of Ruditapes decussatus. Arch Env Cont Toxicol 44:53–66

    Article  CAS  Google Scholar 

  • Campenhout KV, Infante HG, Hoff PT, Moens L, Goemans G, Belpaire C, Adams F, Blust R, Bervoets L (2010) Cytosolic distribution of Cd, Cu and Zn and metallothionein levels in relation to physiological changes in gibel carp (Carassius auratus gibelio) from metal-impacted impact. Ecotoxicol Environ Saf 73:296–305

    Article  Google Scholar 

  • Choi HJ, Ji J, Chung KH, Ahn IY (2007) Cadmium bioaccumulation and detoxification in the gill and digestive gland of the Antarctic bivalve Laternula elliptica. Comp Biochem Physiol Part C 145:227–235

    Google Scholar 

  • Cooper S, Bonneris E, Michaud A, Pinel-Alloul B, Campbell PGC (2013) Influence of a step-change in metal exposure (Cd, Cu, Zn) on metal accumulation and subcellular partitioning in a freshwater bivalve, Pyganodon grandis: a long-term transplantation experiment between lakes with contrasting ambient metal levels. Aqua Toxicol 132–133:73–83

    Article  Google Scholar 

  • Doyen P, Morhain E, Rodius F (2015) Modulation of metallothionein, pi-GST and Se-GPx mRNA expression in the freshwater bivalve Dreissena polymorpha transplanted into pollutes areas. AIMS Environ Sci 2:333–344

    Article  CAS  Google Scholar 

  • Furness RW and Rainbow PS (1990) Heavy metals in the marine environment. Chapter 5: Heavy metal levels in marine invertebrates. CRC Press Inc., Boca Raton

  • Isani G, Carpène E (2014) Metallothionein, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomol Ther 4:435–457

    Google Scholar 

  • Ivanković D, Pavičić J, Erk M, Filipović-Marijić V, Raspor B (2005) Evaluation of the Mytilus galloprovincialis Lam. digestive gland metallothionein as a biomarker in a long-term field study: seasonal and spatial variability. Mar Pollut Bull 50:1303–1313

    Article  Google Scholar 

  • Lemus M, Salazar R, lapo B, Chung K (2016) Metalotioneinas en bivalvos marinos. Lat Am J Aquat Res 44(2):202–2015

    Article  Google Scholar 

  • Li Y, Yang H, Liu N, Luo J, Wang Q, Wang L (2015) Cadmium accumulation and metallothionein biosynthesis in cadmium-treated freshwater mussel Anodonta woodiana. PLoS One 10(2):e0117037. https://doi.org/10.1371/journal.pone.0117037

    Article  Google Scholar 

  • Oaten JFP, Hudson MD, Jensen AC, Williams ID (2015) Effects of organism preparation in metallothionein and metal analysis in marine invertebrates for biomonitoring marine pollution. Sci Total Environ 518-519:238–247

    Article  CAS  Google Scholar 

  • Serafim MA, Bebianno MJ (2001) Variation of metallothionein and metal concentrations in the digestive glands of the clam ruditapes decussatus: sex and seasonal effect. Environ Toxicol Chem 20:544–552

    CAS  Google Scholar 

  • Serafim A, Bebianno MJ (2007) Involvement of metallothionein in Zn accumulation and elimination strategies in Ruditapes decussatus. Arch Environ Contam Toxicology 52:189–199

    Article  CAS  Google Scholar 

  • Serafim A, Bebianno MJ (2010) Effect of a polymetallic mixture on metal accumulation and metallothionein response in the clam Ruditapes decussatus. Aqua Toxicol 99:370–378

    Article  CAS  Google Scholar 

  • Smaoui-Damak W, Hamza-Chaffai A, Bebianno MJ, Amiard JC (2004) Variation of metallothioneins in gills of the clam Ruditapes decussatus from the Gulf of Gabès (Tunisia). Comp Biochem Physiol Part C 139:181–188

    CAS  Google Scholar 

  • Trefry JH, Metz S (1984) Selective leaching of trace metals from sediments as a function of pH. Anal Chem 56:745–749

    Article  CAS  Google Scholar 

  • Trocine RP, Trefry JH (1996) Metal concentration in sediments, water and clams from the Indian River Lagoon, Florida. Mar Pollut Bull 32-10:754–759

    Article  Google Scholar 

  • UNEP/RAMOGE (1999) Manual on the biomarkers recommended for the MED POL Biomonitoring Programme. UNEP, Athens

    Google Scholar 

  • United States Environmental Protection Agency (U.S. EPA) (1991) Method 200.3. Sample preparation procedure for spectrochemical determination of total recoverable elements in biological tissues. Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnati

    Google Scholar 

  • Viarengo A, Ponzano E, Dondero F, Fabbri R (1997) A simple spectrophotmetric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res 44-1:69–84

    Article  Google Scholar 

  • Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A (2007) The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp Biochem and Physiol Part C 146:281–300

    CAS  Google Scholar 

  • Wang WX, Rainbow PS (2010) Significance of metallothioneins in metal accumulation kinetics in marine animals. Comp Biochem Physiol Part C 152:1–8

    Google Scholar 

  • Wang ZS, Yan CZ, Vulpe CD, Yan YJ, Chi QQ (2012) Incorporation of in situ exposure and biomarkers response in clams Ruditapes philippinarum for assessment of metal pollution in coastal areas from the Maluan Bay of China. Mar Pollut Bull 64:90–98

    Article  CAS  Google Scholar 

  • Wang Z, Feng C, Yeb C, Wang Y, Yan C, Li R, Yan Y, Chi Q (2016) Subcellular partitioning profiles and metallothionein levels in indigenous clams Moerella iridescens from a metal-impacted coastal bay. Aqua Toxicol 176:10–23

    Article  CAS  Google Scholar 

  • Xu D, Yu B, Zhang Y, Cui M, Zhang Q (2015) Metallothionein protein expression of Crassostrea hongkongensis in response to cadmium stress. J Shellfish Res 34(2):311–318

    Article  Google Scholar 

  • Yen Le TT, Zimmermann S, Sures B (2016) How does the metallothionein induction in bivalves meet the criteria for biomarkers of metal exposure? Environ Pollut 212:257–268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neila Drira.

Additional information

Responsible editor: Cinta Porte

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drira, N., Trefry, J.H. & Trocine, R.P. Interrelationships among trace metals and metallothionein in digestive glands and gills for field samples of Merceneria merceneria . Environ Sci Pollut Res 24, 27897–27904 (2017). https://doi.org/10.1007/s11356-017-0368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0368-5

Keywords

Navigation