Skip to main content
Log in

Optical tweezers: a non-destructive tool for soft and biomaterial investigations

  • Life, New Materials and Plasmonics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Optical tweezers are a key technique for trapping and contactless manipulation of particles at the micro- and nanoscale that can exert and sense forces from hundreds of piconewton down to few femtonewton. In their simplest implementation, they are based on a single laser beam tightly focused to a high-intensity diffraction-limited spot. Here, after reviewing the general theoretical background on optical forces, we focus on their calibration and show a comparison between frequency and time domain methods. Then, we show novel measurements and calculations of optical forces on gold nanoparticles discussing their size scaling behavior. Finally, we describe recent applications of chiral optical trapping to soft materials, and integration of optical tweezers with Raman spectroscopy for ultra-sensitive spectroscopy of biomolecules in liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajito K, Torimitsu K (2002) Laser trapping and Raman spectroscopy of single cellular organelles in the nanometric range. Lab Chip 2:11–14

    Article  CAS  Google Scholar 

  • Albaladejo S, Marqués MI, Laroche M, Sáenz JJ (2009) Scattering forces from the curl of the spin angular momentum of a light field. Phys Rev Lett 102:113602

    Article  Google Scholar 

  • Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156

    Article  CAS  Google Scholar 

  • Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582

    Article  CAS  Google Scholar 

  • Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520

    Article  CAS  Google Scholar 

  • Ashkin A, Dziedzic JM, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771

    Article  CAS  Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient optical trap for dielectric particles. Opt Lett 11:288

    Article  CAS  Google Scholar 

  • Bar-Ziv R, Meller A, Tlusty T, Moses E, Stavans J, Safran SA (1997) Localized dynamic light scattering: probing single particle dynamics at the nanoscale. Phys Rev Lett 78:154

    Article  CAS  Google Scholar 

  • Berg-Sorensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594

    Article  CAS  Google Scholar 

  • Borghese F, Denti P, Saija R (2007) Scattering from model nonspherical particles. Springer, Berlin

    Google Scholar 

  • Borghese F, Denti P, Saija R, Iatì MA (2006) Radiation torque on nonspherical particles in the transition matrix formalism. Opt Express 14:9508–9521

    Article  Google Scholar 

  • Borghese F, Denti P, Saija R, Iatì MA (2007) Optical trapping of nonspherical particles in the T-matrix formalism. Opt Express 15:11984–11998

    Article  Google Scholar 

  • Borghese F, Denti P, Saija R, Iatì MA, Maragó OM (2008) Radiation torque and force on optically trapped linear nanostructures. Phys Rev Lett 100:163903

    Article  CAS  Google Scholar 

  • Bosanac L, Aabo T, Bendix PM, Oddershede LB (2008) Efficient optical trapping and visualization of silver nanoparticles. Nano Letters 8(5):1486–1491

    Article  CAS  Google Scholar 

  • Buosciolo A, Pesce G, Sasso A (2004) New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers. Opt Commun 230:357–368

    Article  CAS  Google Scholar 

  • Callegari A, Mijalkov M, Gököz AB, Volpe G (2014) Computational toolbox for optical tweezers in geometrical optics. arXiv:1402.5439

  • Chan JW, Taylor DS, Zwerdling T, Lane SM, Ihara K, Huser T (2006) Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys J 90:648–656

    Article  CAS  Google Scholar 

  • Chaumet PC, Nieto-Vesperinas M (2000) Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt Lett 25:1065–1067

    Article  CAS  Google Scholar 

  • Cipparrone G, Mazzulla A, Pane A, Hernandez RJ, Bartolino R (2011) Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device. Adv Mater 23:5773–5778

    Article  CAS  Google Scholar 

  • Coffey WT, Kalmykov YT, Waldron JT (2004) The Langevin equation. World Scientific, Singapore

    Google Scholar 

  • Cojoc D, Ferrari E, Garbin V, Di Fabrizio E (2005) Multiple optical tweezers for micro Raman spectroscopy. In: Proceedings of SPIE 5930, optical trapping and optical micromanipulation II, 2005, p 59300

  • Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  • De Luca AC, Rusciano G, Ciancia R, Martinelli V, Pesce G, Rotoli B, Sasso A (2007) Resonance raman spectroscopy and mechanics of single red blood cell manipulated by optical tweezers. Haematologica 92(S3):174

    Google Scholar 

  • De Luca AC, Rusciano G, Ciancia R, Martinelli V, Pesce G, Rotoli B, Selvaggi L, Sasso A (2008) Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by raman tweezers. Opt Express 16:7943–7957

    Article  Google Scholar 

  • Deng JL, Wei Q, Zhang MH, Wang YZ, Li YQ (2005) Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers raman spectroscopy. J Raman Spectrosc 36:257–261

    Article  CAS  Google Scholar 

  • Dholakia K, Čižmár T (2011) Shaping the future of manipulation. Nat Photonics 5:335–342

    Article  CAS  Google Scholar 

  • Dienerowitz M, Mazilu M, Reece PJ, Krauss TF, Dholakia K (2008) Optical vortex trap for resonant confinement of metal nanoparticles. Opt Express 16:4991–4999

    Article  Google Scholar 

  • Donato MG, Vasi S, Sayed R, Jones PH, Bonaccorso F, Ferrari AC, Gucciardi PG, Maragò OM (2012) Optical trapping of nanotubes with cylindrical vector beams. Optics Lett 37:3381–3383

    Article  CAS  Google Scholar 

  • Donato MG, Hernandez J, Mazzulla A, Provenzano C, Saija R, Sayed R, Vasi S, Magazzù A, Pagliusi P, Bartolino R, Gucciardi PG, Maragó OM, Cipparrone G (2014) Polarization-dependent optomechanics mediated by chiral microresonators. Nat Commun 5:3656

    Article  CAS  Google Scholar 

  • Draine BT (1988) The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J 333(1):848–872

    Article  CAS  Google Scholar 

  • Fazal FM, Block SM (2011) Optical tweezers study life under tension. Nat Photonics 5:318–321

    Article  CAS  Google Scholar 

  • Florin E-L, Pralle A, Horber JKH, Stelzer EHK (1997) Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J Struct Biol 119:202–211

    Article  CAS  Google Scholar 

  • Friese MEJ, Enger J, Rubinsztein-Dunlop H, Heckenberg NR (1996) Optical angular-momentum transfer to trapped absorbing particles. Phys Rev A 54:1593

    Article  CAS  Google Scholar 

  • Friese MEJ, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H (1998) Optical alignment and spinning of laser-trapped microscopic particles. Nature 394:348–350

    Article  CAS  Google Scholar 

  • Galajda P, Ormos P (2001) Complex micromachines produced and driven by light. Appl Phys Lett 78:249–251

    Article  CAS  Google Scholar 

  • Ghislain LP, Webb WW (1993) Scanning-force microscope based on an optical trap. Opt Lett 18:1678–1680

    Article  CAS  Google Scholar 

  • Gordon JP (1973) Radiation forces and momenta in dielectric media. Phys Rev A 8:14–21

    Article  CAS  Google Scholar 

  • Hamden KE, Bryan BA, Ford PW, Xie C, Li Y-Q, Akula SM (2005) Spectroscopic analysis of Kaposi’s sarcoma-associated herpesvirus infected cells by raman tweezers. J Virol Methods 129:145–151

    Article  CAS  Google Scholar 

  • Hansen PM, Bhatia VK, Harrit N, Oddershede L (2005) Expanding the optical trapping range of gold nanoparticles. Nano Letters 5(10):1937–1942

    Article  CAS  Google Scholar 

  • Henderson S, Mitchell S, Bartlett P (2001) Position correlation microscopy: probing single particle dynamics in colloidal suspensions. Colloids Surf A: Physicochem Eng Aspects 190:81–88

    Article  CAS  Google Scholar 

  • Hernández RJ, Mazzulla A, Pane A, Volke-Sepúlveda K, Cipparrone G (2013) Attractive–repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers. Lab Chip 13:459–467

    Article  Google Scholar 

  • Irrera A, Artoni P, Saija R, Gucciardi PG, Iatì MA, Borghese F, Denti P, Iacona F, Priolo F, Marago OM (2011) Size-scaling in optical trapping of silicon nanowires. Nano Letters 11:4879–4884

    Article  CAS  Google Scholar 

  • Jones PH, Marago OM, Stride EPJ (2007) Parametrization of trapping forces on microbubbles in scanning optical tweezers. J Opt A: Pure Appl Opt 9:278

    Article  Google Scholar 

  • Jones PH, Maragó OM, Volpe G (2015) Optical tweezers. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones PH, Palmisano F, Bonaccorso F, Gucciardi PG, Calogero G, Ferrari AC, Maragó OM (2009) Rotation detection in light-driven nanorotors. ACS Nano 3(10):3077–3084

    Article  CAS  Google Scholar 

  • Kyrsting A, Bendix PM, Stamou DG, Oddershede LB (2011) Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Letters 11:888–892

    Article  CAS  Google Scholar 

  • Lankers M, Popp J, Rössling G, Kiefer W (1997) Raman investigations on laser-trapped gas bubbles. Chem Phys Lett 277:331–334

    Article  CAS  Google Scholar 

  • Maier SA (2007) Plasmonics: fundamentals and applications: fundamentals and applications. Springer, Berlin

    Google Scholar 

  • Maragò OM, Gucciardi PG, Jones PH (2010a) Photonic force microscopy: from femtonewton force sensing to ultra-sensitive spectroscopy. In: Scanning probe microscopy in nanoscience and nanotechnology. Springer, Berlin, pp 23–56

  • Maragò OM, Bonaccorso F, Saija R, Privitera G, Gucciardi PG, Iatì MA, Calogero G, Jones PH, Borghese F, Denti P, Nicolosi V, Ferrari AC (2010b) Brownian motion of graphene. ACS Nano 4:7515

    Article  Google Scholar 

  • Maragò OM, Jones PH, Bonaccorso F, Scardaci V, Gucciardi PG, Rozhin AG, Ferrari AC (2008) Femtonewton force sensing with optically trapped nanotubes. Nano Letters 8:3211–3216

    Article  Google Scholar 

  • Maragò OM, Jones PH, Gucciardi PG, Volpe G, Ferrari AC (2013) Optical trapping and manipulation of nanostructures. Nat Nanotechnol 8:807–819

    Article  Google Scholar 

  • Marqués MI (2014) Beam configuration proposal to verify that scattering forces come from the orbital part of the Poynting vector. Opt Lett 39:5122–5125

    Article  Google Scholar 

  • Messina E, Cavallaro E, Cacciola A, Saija R, Borghese F, Denti P, Fazio B, D’Andrea C, Gucciardi PG, Iati MA, Meneghetti M, Compagnini G, Amendola V, Maragò OM (2011a) Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids. J Phys Chem C 115:5115–5122

    Article  CAS  Google Scholar 

  • Messina E, Cavallaro E, Cacciola A, Iatì MA, Gucciardi PG, Borghese F, Denti P, Saija R, Compagnini G, Meneghetti M, Amendola V, Maragò OM (2011b) Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. ACS Nano 5(2):905–913

    Article  CAS  Google Scholar 

  • Messina E, D’Urso L, Fazio E, Satriano C, Donato MG, D’Andrea C, Maragò OM, Gucciardi PG, Compagnini G, Neri F (2012) Tuning the structural and optical properties of gold/silver nano-alloys prepared by laser ablation in liquids for optical limiting, ultra-sensitive spectroscopy, and optical trapping. J Quant Spectrosc Radiat Transf 113:2490–2498

    Article  CAS  Google Scholar 

  • Mishchenko MI (2001) Radiation force caused by scattering, absorption, and emission of light by nonspherical particles. J Quant Spectrosc Radiat Transf 70:811–816

    Article  CAS  Google Scholar 

  • Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  CAS  Google Scholar 

  • Nieminen TA, Rubinsztein-Dunlop H, Heckenberg NR (2001) Calculation and optical measurement of laser trapping forces on non-spherical particles. J Quant Spectrosc Radiat Trans 70:627–637

    Article  CAS  Google Scholar 

  • Nieminen TA, Loke VLY, Stilgoe AB, Heckenberg NR, Rubinsztein-Dunlop H (2011) T-matrix method for modelling optical tweezers. J Mod Opt 58:528–544

    Article  Google Scholar 

  • Nieminen TA, du Preez-Wilkinson N, Stilgoe AB, Loke VLY, Bui AAM, Rubinsztein-Dunlop H (2014) Optical tweezers: theory and modelling. J Quant Spectrosc Radiat Transf 146:59–80

    Article  CAS  Google Scholar 

  • Ohlinger A, Nedev S, Lutich AA, Feldmann J (2011) Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Letters 11:1770–1774

    Article  CAS  Google Scholar 

  • Olof SN, Grieve JA, Phillips DB, Rosenkranz H, Yallop ML, Miles MJ, Patil AJ, Mann S, Carberry DM (2012) Measuring nanoscale forces with living probes. Nano Letters 12:6018–6023

    Article  CAS  Google Scholar 

  • Padgett M, Bowman R (2011) Tweezers with a twist. Nat Photonics 5:343–348

    Article  CAS  Google Scholar 

  • Palima D, Glückstad J (2013) Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photonics Rev 7:478–494

    Article  CAS  Google Scholar 

  • Pesce G, Volpe G, De Luca AC, Rusciano G, Volpe G (2009) Quantitative assessment of non-conservative radiation forces in an optical trap. Europhys Lett 86:38002

    Article  Google Scholar 

  • Petrov DV (2007) Raman spectroscopy of optically trapped particles. J Opt A Pure Appl Opt 9:139

  • Phillips DB, Grieve JA, Olof SN, Kocher SJ, Bowman R, Padgett MJ, Miles MJ, Carberry DM (2011) Surface imaging using holographic optical tweezers. Nanotechnology 22:285503

    Article  CAS  Google Scholar 

  • Phillips DB, Padgett MJ, Hanna S, Ho Y-LD, Carberry DM, Miles MJ, Simpson SH (2014) Shape-induced force fields in optical trapping. Nat Photonics 8:400–405

    Article  CAS  Google Scholar 

  • Ploschner M, Cizmar T, Mazilu M, Di Falco A, Dholakia K (2012) Bidirectional optical sorting of gold nanoparticles. Nano Letters 12:1923–1927

    Article  CAS  Google Scholar 

  • Pralle A, Prummer M, Florin E-L, Stelzer EHK, Horber JKH (1999) Three-dimensional high resolution particle tracking for optical tweezers by forward light scattering. Microsc Res Tech 44:378–386

    Article  CAS  Google Scholar 

  • Prikulis J, Svedberg F, Käll M, Enger J, Ramser K, Goksör M, Hanstorp D (2004) Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Letters 4:115–118

    Article  CAS  Google Scholar 

  • Rao S, Raj S, Balint S, Fons CB, Campoy S, Llagostera M, Petrov D (2010) Single dna molecule detection in an optical trap using surface-enhanced raman scattering. Appl Phys Lett 96:213701

    Article  Google Scholar 

  • Reece PJ, Paiman S, Abdul-Nabi O, Gao Q, Gal M, Tan HH, Jagadish C (2009) Combined optical trapping and microphotoluminescence of single inp nanowires. Appl Phys Lett 95:101109

    Article  Google Scholar 

  • Saija R, Iatí MA, Giusto A, Denti P, Borghese F (2005) Transverse components of the radiation force on nonspherical particles in the T-matrix formalism. J Quant Spectrosc Radiat Transf 94:163–179

    Article  CAS  Google Scholar 

  • Saija R, Denti P, Borghese F, Maragó OM, Iatì MA (2009) Optical trapping calculations for metal nanoparticles: comparison with experimental data for Au and Ag spheres. Opt Express 17:10231–10241

    Article  CAS  Google Scholar 

  • Seol Y, Carpenter AE, Perkins TT (2006) Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt Lett 31:2429–2431

    Article  CAS  Google Scholar 

  • Simpson SH (2014) Inhomogeneous and anisotropic particles in optical traps: physical behaviour and applications. J Quant Spectrosc Radiat Transf 146:81–99

    Article  CAS  Google Scholar 

  • Simpson SH, Hanna S (2006) Numerical calculation of interparticle forces arising in association with holographic assembly. JOSA A 23:1419–1431

    Article  Google Scholar 

  • Simpson SH, Hanna S (2007) Optical trapping of spheroidal particles in gaussian beams. JOSA A 24:430–443

    Article  Google Scholar 

  • Skelton SE, Sergides M, Memoli G, Maragó OM, Jones PH (2012) Trapping and deformation of microbubbles in a dual-beam fibre-optic trap. J Opt 14:075706

    Article  Google Scholar 

  • Skelton SE, Sergides M, Saija R, Iatì MA, Maragó OM, Jones PH (2013) Trapping volume control in optical tweezers using cylindrical vector beams. Opt Lett 38:28–30

    Article  CAS  Google Scholar 

  • Svoboda K, Block SM (1994a) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    Article  CAS  Google Scholar 

  • Svoboda K, Block SM (1994b) Optical trapping of metallic Rayleigh particles. Opt Lett 19:930–932

    Article  CAS  Google Scholar 

  • Swartzlander GA Jr, Peterson TJ, Artusio-Glimpse AB, Raisanen AD (2011) Stable optical lift. Nat Photonics 5:48–51

    Article  CAS  Google Scholar 

  • Tan S, Lopez HA, Cai CW, Zhang Y (2004) Optical trapping of single-walled carbon nanotubes. Nano Letters 4:1415–1419

    Article  CAS  Google Scholar 

  • Tkachenko G, Brasselet E (2014) Optofluidic sorting of material chirality by chiral light. Nat Commun 5:3577

    Google Scholar 

  • Wang F, Reece PJ, Paiman S, Gao Q, Tan HH, Jagadish C (2011) Nonlinear optical processes in optically trapped inp nanowires. Nano Letters 11:4149–4153

    Article  CAS  Google Scholar 

  • Wang F, Toe WJ, Lee WM, McGloin D, Gao Q, Tan HH, Jagadish C, Reece PJ (2013) Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. Nano Letters 13:1185–1191

    Article  CAS  Google Scholar 

  • Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  • Wood BR, Tait B, McNaughton D (2001) Micro-Raman characterisation of the r to t state transition of haemoglobin within a single living erythrocyte. Biochim Biophys Acta (BBA)-Mol Cell Res 1539:58–70

    Article  CAS  Google Scholar 

  • Xie CG, Dinno MA, Li Y-Q (2002) Near-infrared Raman spectroscopy of single optically trapped biological cells. Opt Lett 27:249

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support from “Programma Operativo Nazionale Ricerca e Competitivitá” 2007–2013, Project PON01_01322 PANREX, Project PAC02L3_00087 SOCIAL-NANO, and the MPNS COST Action 1205 “Advances in Optofluidics: Integration of Optical Control and Photonics with Microfluidics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Maragó.

Additional information

This contribution is the written, peer-reviewed version of a paper presented at one of the two conferences “From Life to Life: Through New Materials and Plasmonics”—Accademia Nazionale dei Lincei in Rome on June 23, 2014, and “NanoPlasm 2014: New Frontiers in Plasmonics and NanoOptics”—Cetraro (CS) on June 16–20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magazzú, A., Spadaro, D., Donato, M.G. et al. Optical tweezers: a non-destructive tool for soft and biomaterial investigations. Rend. Fis. Acc. Lincei 26 (Suppl 2), 203–218 (2015). https://doi.org/10.1007/s12210-015-0395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0395-4

Keywords

Navigation