Skip to main content

Introduction to Optical Tweezers

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

Thirty years after their invention by Arthur Ashkin and colleagues at Bell Labs in 1986 [1], optical tweezers (or traps) have become a versatile tool to address numerous biological problems. Put simply, an optical trap is a highly focused laser beam that is capable of holding and applying forces to micron-sized dielectric objects. However, their development over the last few decades has converted these tools from boutique instruments into highly versatile instruments of molecular biophysics. This introductory chapter intends to give a brief overview of the field, highlight some important scientific achievements, and demonstrate why optical traps have become a powerful tool in the biological sciences. We introduce a typical optical setup, describe the basic theoretical concepts of how trapping forces arise, and present the quantitative position and force measurement techniques that are most widely used today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkin A, Dziedzic JM, Bjorkholm JE et al (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290

    Article  CAS  Google Scholar 

  2. Shotton DM (1989) Confocal scanning optical microscopy and its applications for biological specimens. J Cell Sci 94(2):175–206

    Google Scholar 

  3. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89(1):141–145

    Article  CAS  Google Scholar 

  4. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  Google Scholar 

  5. Huisken J, Swoger J, Del Bene F et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009

    Article  CAS  Google Scholar 

  6. Shribak M, Inoué S (2006) Orientation-independent differential interference contrast microscopy. Appl Optics 45(3):460–469

    Article  Google Scholar 

  7. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie 9(1):413–418

    Article  Google Scholar 

  8. Pawley JB (2006) Handbook of biological confocal microscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  9. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  Google Scholar 

  10. Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci 97(15):8206–8210

    Article  CAS  Google Scholar 

  11. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  Google Scholar 

  12. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–796

    Article  CAS  Google Scholar 

  13. Alberts B, Bray D, Hopkin K et al (2004) Essential cell biology, 2nd edn. Garland Science, New York

    Google Scholar 

  14. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55(12):3989–4014

    Article  CAS  Google Scholar 

  15. Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33(1):15–22

    Article  CAS  Google Scholar 

  16. Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440):177–179

    Article  CAS  Google Scholar 

  17. Legant WR, Miller JS, Blakely BL et al (2010) Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat Methods 7(12):969–971

    Article  CAS  Google Scholar 

  18. Müller DJ, Dufrene YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3(5):261–269

    Article  CAS  Google Scholar 

  19. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930

    Article  CAS  Google Scholar 

  20. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78(1):520–535

    Article  CAS  Google Scholar 

  21. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491

    Article  CAS  Google Scholar 

  22. Ashkin A, Dziedzic J (1987) Optical trapping and manipulation of viruses and bacteria. Science 235(4795):1517–1520

    Article  CAS  Google Scholar 

  23. Ashkin A, Dziedzic J, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330(6150):769–771

    Article  CAS  Google Scholar 

  24. Block SM, Blair DF, Berg HC (1989) Compliance of bacterial flagella measured with optical tweezers. Nature 338:514–518

    Article  CAS  Google Scholar 

  25. Block SM, Goldstein LS, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    Article  CAS  Google Scholar 

  26. Bouchiat C, Wang M, Allemand J-F et al (1999) Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys J 76(1):409–413

    Article  CAS  Google Scholar 

  27. Wang MD, Yin H, Landick R et al (1997) Stretching DNA with optical tweezers. Biophys J 72(3):1335

    Article  CAS  Google Scholar 

  28. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271(5250):795–799

    Article  CAS  Google Scholar 

  29. Dupuis DE, Guilford WH, Wu J et al (1997) Actin filament mechanics in the laser trap. J Muscle Res Cell Motil 18(1):17–30

    Article  CAS  Google Scholar 

  30. Streichfuss M, Erbs F, Uhrig K et al (2011) Measuring forces between two single actin filaments during bundle formation. Nano Lett 11(9):3676–3680

    Article  CAS  Google Scholar 

  31. van Mameren J, Vermeulen KC, Gittes F et al (2009) Leveraging single protein polymers to measure flexural rigidity†. J Phys Chem B 113(12):3837–3844

    Article  CAS  Google Scholar 

  32. Hawkins T, Mirigian M, Selcuk Yasar M et al (2010) Mechanics of microtubules. J Biomech 43(1):23–30

    Article  Google Scholar 

  33. Hawkins TL, Sept D, Mogessie B et al (2013) Mechanical properties of doubly stabilized microtubule filaments. Biophys J 104(7):1517–1528

    Article  CAS  Google Scholar 

  34. Kikumoto M, Kurachi M, Tosa V et al (2006) Flexural rigidity of individual microtubules measured by a buckling force with optical traps. Biophys J 90(5):1687–1696

    Article  CAS  Google Scholar 

  35. Kurachi M, Hoshi M, Tashiro H (1995) Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motil Cytoskeleton 30(3):221–228

    Article  CAS  Google Scholar 

  36. Lansky Z, Braun M, Lüdecke A et al (2015) Diffusible crosslinkers generate directed forces in microtubule networks. Cell 160(6):1159–1168

    Article  CAS  Google Scholar 

  37. Pampaloni F, Lattanzi G, Jonas A et al (2006) Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc Natl Acad Sci U S A 103(27):10248–10253. doi:10.1073/pnas.0603931103

    Article  CAS  Google Scholar 

  38. Kerssemakers J, Janson M, Van der Horst A et al (2003) Optical trap setup for measuring microtubule pushing forces. Appl Phys Lett 83(21):4441–4443

    Article  CAS  Google Scholar 

  39. Allersma MW, Gittes F, Stewart RJ et al (1998) Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys J 74(2):1074–1085

    Article  CAS  Google Scholar 

  40. Coppin CM, Pierce DW, Hsu L et al (1997) The load dependence of kinesin’s mechanical cycle. Proc Natl Acad Sci 94(16):8539–8544

    Article  CAS  Google Scholar 

  41. Kawaguchi K, Ishiwata S (2000) Temperature dependence of force, velocity, and processivity of single kinesin molecules. Biochem Biophys Res Commun 272(3):895–899

    Article  CAS  Google Scholar 

  42. Kawaguchi K, Ishiwata S (2001) Nucleotide-dependent single-to double-headed binding of kinesin. Science 291(5504):667–669

    Article  CAS  Google Scholar 

  43. Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400(6740):184–189

    Article  CAS  Google Scholar 

  44. Mallik R, Carter BC, Lex SA et al (2004) Cytoplasmic dynein functions as a gear in response to load. Nature 427(6975):649–652

    Article  CAS  Google Scholar 

  45. Gennerich A, Carter AP, Reck-Peterson SL et al (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131(5):952–965

    Article  CAS  Google Scholar 

  46. Molloy J, Burns J, Kendrick-Jones J et al (1995) Movement and force produced by a single myosin head. Nature 378(6553):209–212

    Article  CAS  Google Scholar 

  47. Rief M, Rock RS, Mehta AD et al (2000) Myosin-V stepping kinetics: a molecular model for processivity. Proc Natl Acad Sci 97(17):9482–9486

    Article  CAS  Google Scholar 

  48. Rock RS, Rice SE, Wells AL et al (2001) Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci 98(24):13655–13659

    Article  CAS  Google Scholar 

  49. Veigel C, Coluccio LM, Jontes JD et al (1999) The motor protein myosin-I produces its working stroke in two steps. Nature 398(6727):530–533

    Article  CAS  Google Scholar 

  50. Veigel C, Wang F, Bartoo ML et al (2002) The gated gait of the processive molecular motor, myosin V. Nat Cell Biol 4(1):59–65

    Article  CAS  Google Scholar 

  51. Davenport RJ, Wuite GJ, Landick R et al (2000) Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287(5462):2497

    Article  CAS  Google Scholar 

  52. Forde NR, Izhaky D, Woodcock GR et al (2002) Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proc Natl Acad Sci 99(18):11682–11687

    Article  CAS  Google Scholar 

  53. Neuman KC, Abbondanzieri EA, Landick R et al (2003) Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115(4):437–447

    Article  CAS  Google Scholar 

  54. Shaevitz JW, Abbondanzieri EA, Landick R et al (2003) Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426(6967):684–687

    Article  CAS  Google Scholar 

  55. Wang MD, Schnitzer MJ, Yin H et al (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282(5390):902–907

    Article  CAS  Google Scholar 

  56. Smith DE, Tans SJ, Smith SB et al (2001) The bacteriophage ϕ29 portal motor can package DNA against a large internal force. Nature 413(6857):748–752

    Article  CAS  Google Scholar 

  57. Kellermayer MS, Smith SB, Granzier HL et al (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276(5315):1112–1116

    Article  CAS  Google Scholar 

  58. Wang SY, Arellano-Santoyo H, Combs PA et al (2010) Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria. Proc Natl Acad Sci U S A 107(20):9182–9185

    Article  CAS  Google Scholar 

  59. Min TL, Mears PJ, Chubiz LM et al (2009) High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat Methods 6(11):831–835

    Article  CAS  Google Scholar 

  60. Martínez IA, Campoy S, Tort M et al (2013) A simple technique based on a single optical trap for the determination of bacterial swimming pattern. PLoS One 8(4):e61630

    Article  CAS  Google Scholar 

  61. Friedrich L, Rohrbach A (2015) Surface imaging beyond the diffraction limit with optically trapped spheres. Nat Nanotechnol 10(12):1064–1069

    Article  CAS  Google Scholar 

  62. Kress H (2006) Cell mechanics during phagocytosis studied by optical tweezers-based microscopy. PhD thesis, University of Heidelberg, Cuvillier Verlag, Göttingen

    Google Scholar 

  63. Kohler F, Rohrbach A (2015) Surfing along filopodia: a particle transport revealed by molecular-scale fluctuation analyses. Biophys J 108(9):2114–2125

    Article  CAS  Google Scholar 

  64. Meinel A, Tränkle B, Römer W et al (2014) Induced phagocytic particle uptake into a giant unilamellar vesicle. Soft Matter 10(20):3667–3678

    Article  CAS  Google Scholar 

  65. Jünger F, Kohler F, Meinel A et al (2015) Measuring local viscosities near plasma membranes of living cells with photonic force microscopy. Biophys J 109(5):869–882

    Article  CAS  Google Scholar 

  66. Atakhorrami M, Sulkowska J, Addas K et al (2006) Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps. Phys Rev E Stat Nonlin Soft Matter Phys 73(6):061501

    Article  CAS  Google Scholar 

  67. Guo M, Ehrlicher AJ, Jensen MH et al (2014) Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158(4):822–832

    Article  CAS  Google Scholar 

  68. Mizuno D, Head D, MacKintosh F et al (2008) Active and passive microrheology in equilibrium and nonequilibrium systems. Macromolecules 41(19):7194–7202

    Article  CAS  Google Scholar 

  69. Mizuno D, Bacabac R, Tardin C et al (2009) High-resolution probing of cellular force transmission. Phys Rev Lett 102(16):168102

    Article  CAS  Google Scholar 

  70. Carmon G, Kumar P, Feingold M (2014) Optical tweezers assisted imaging of the Z-ring in Escherichia coli: measuring its radial width. New Journal of Physics 16. doi:10.1088/1367-2630/16/1/013043

    Google Scholar 

  71. Katchinskiy N, Goez HR, Dutta I et al (2016) Novel method for neuronal nanosurgical connection. Scientific Reports 6

    Google Scholar 

  72. Landenberger B, Höfemann H, Wadle S et al (2012) Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab Chip 12(17):3177–3183

    Article  CAS  Google Scholar 

  73. Bergman J, Osunbayo O, Vershinin M (2015) Constructing 3D microtubule networks using holographic optical trapping. Scientific Reports 5

    Google Scholar 

  74. Koch MD, Schneider N, Nick P et al (2016) Frequency dependent transport of mechanical stimuli along single microtubules and small networks. Submitted

    Google Scholar 

  75. Kress H, Park J-G, Mejean CO et al (2009) Cell stimulation with optically manipulated microsources. Nat Methods 6(12):905–909

    Article  CAS  Google Scholar 

  76. Mahamdeh M, Pérez Campos C, Schäffer E (2011) Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers. Opt Express 19(12):11759–11768

    Article  Google Scholar 

  77. Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61(2):569–582

    Article  CAS  Google Scholar 

  78. Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285. doi:10.1146/annurev.bb.23.060194.001335

    Article  CAS  Google Scholar 

  79. Rohrbach A (2005) Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. Phys Rev Lett 95(16):168102

    Article  CAS  Google Scholar 

  80. Kress H, Stelzer EHK, Griffiths G et al (2005) Control of relative radiation pressure in optical traps: Application to phagocytic membrane binding studies. Physical Review E 71 (6)

    Google Scholar 

  81. Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H (2008) Forces in optical tweezers with radially and azimuthally polarized trapping beams. Opt Lett 33(2):122–124

    Article  Google Scholar 

  82. Rohrbach A, Stelzer EHK (2001) Optical trapping of dielectric particles in arbitrary fields. J Opt Soc Am A Opt Image Sci Vis 18(4):839–853

    Article  CAS  Google Scholar 

  83. Montange RK, Bull MS, Shanblatt ER et al (2013) Optimizing bead size reduces errors in force measurements in optical traps. Opt Express 21(1):39–48

    Article  CAS  Google Scholar 

  84. Loke VL, Nieminen TA, Parkin SJ et al (2007) FDFD/T-matrix hybrid method. J Quant Spectrosc Radiat Transfer 106(1):274–284

    Article  CAS  Google Scholar 

  85. Nieminen TA, Loke VLY, Stilgoe AB et al (2007) Optical tweezers computational toolbox. J Opt A Pure Appl Opt 9(8):S196–S203. doi:10.1088/1464-4258/9/8/s12

    Article  Google Scholar 

  86. Malagnino N, Pesce G, Sasso A et al (2002) Measurements of trapping efficiency and stiffness in optical tweezers. Opt Commun 214(1):15–24

    Article  CAS  Google Scholar 

  87. Koch M, Rohrbach A (2012) Object-adapted optical trapping and shape-tracking of energy-switching helical bacteria. Nat Photonics 6(10):680–686. doi:10.1038/nphoton.2012.232

    Article  CAS  Google Scholar 

  88. Koch M, Rohrbach A (2014) How to calibrate an object-adapted optical trap for force sensing and interferometric shape tracking of asymmetric structures. Opt Express 22(21):25242–25257. doi:10.1364/OE.22.025242

    Article  Google Scholar 

  89. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179(1):298–310

    Article  CAS  Google Scholar 

  90. Curtis JE, Koss BA, Grier DG (2002) Dynamic holographic optical tweezers. Opt Commun 207(1-6):169–175. doi:10.1016/s0030-4018(02)01524-9

    Article  CAS  Google Scholar 

  91. Jesacher A, Bernet S, Ritsch-Marte M (2014) Combined holographic optical trapping and optical image processing using a single diffractive pattern displayed on a spatial light modulator. Opt Lett 39(18):5337–5340

    Article  Google Scholar 

  92. Cheong FC, Krishnatreya BJ, Grier DG (2010) Strategies for three-dimensional particle tracking with holographic video microscopy. Opt Express 18(13):13563–13573

    Article  Google Scholar 

  93. Speidel M, Jonáš A, Florin E-L (2003) Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt Lett 28(2):69–71

    Article  CAS  Google Scholar 

  94. Hirvonen LM, Festy F, Suhling K (2014) Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution. Opt Lett 39(19):5602–5605

    Article  Google Scholar 

  95. Tseng Y, Kole TP, Wirtz D (2002) Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys J 83(6):3162–3176

    Article  CAS  Google Scholar 

  96. Pralle A, Prummer M, Florin EL et al (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44(5):378–386

    Article  CAS  Google Scholar 

  97. Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23(1):7–9

    Article  CAS  Google Scholar 

  98. Svoboda K, Schmidt CF, Schnapp BJ et al (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365(6448):721–727

    Article  CAS  Google Scholar 

  99. Rice SE, Purcell TJ, Spudich JA (2003) Building and using optical traps to study properties of molecular motors. Methods Enzymol 361:112–133

    Article  CAS  Google Scholar 

  100. Gögler M, Betz T, Käs JA (2007) Simultaneous manipulation and detection of living cell membrane dynamics. Opt Lett 32(13):1893–1895

    Article  Google Scholar 

  101. Chavez I, Huang R, Henderson K et al (2008) Development of a fast position-sensitive laser beam detector. Rev Sci Instrum 79(10):105104

    Article  CAS  Google Scholar 

  102. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW et al (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438(7067):460–465

    Article  CAS  Google Scholar 

  103. Perkins TT (2014) Ångström-precision optical traps and applications*. Annu Rev Biophys 43:279–302

    Article  CAS  Google Scholar 

  104. Carter AR, Seol Y, Perkins TT (2009) Precision surface-coupled optical-trapping assay with one-basepair resolution. Biophys J 96(7):2926–2934

    Article  CAS  Google Scholar 

  105. Saleh BEA, Teich MC (1991) Fundamentals of Photonics. Wiley, New York

    Book  Google Scholar 

  106. Goodman JW (2005) Introduction to fourier optics. In: JW Goodman Englewood. Introduction to Fourier optics, 3rd edn. CO: Roberts & Co Publishers, 2005 1

    Google Scholar 

  107. Feng S, Winful H (2001) Physical origin of the Gouy phase shift. Opt Lett 26(8):485–487

    Article  CAS  Google Scholar 

  108. Rohrbach A, Stelzer EHK (2002) Three-dimensional position detection of optically trapped dielectric particles. J Appl Phys 91(8):5474–5488

    Article  CAS  Google Scholar 

  109. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75(3):594–612

    Article  CAS  Google Scholar 

  110. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809

    Article  CAS  Google Scholar 

  111. Richly MU, Türkcan S, Le Gall A et al (2013) Calibrating optical tweezers with Bayesian inference. Opt Express 21(25):31578–31590

    Article  CAS  Google Scholar 

  112. Tolić-Nørrelykke SF, Schäffer E, Howard J et al (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77(10):103101

    Article  CAS  Google Scholar 

  113. Ghislain LP, Switz NA, Webb WW (1994) Measurement of small forces using an optical trap. Rev Sci Instrum 65(9):2762–2768

    Article  CAS  Google Scholar 

  114. Vermeulen KC, van Mameren J, Stienen GJ et al (2006) Calibrating bead displacements in optical tweezers using acousto-optic deflectors. Rev Sci Instrum 77(1):013704

    Article  CAS  Google Scholar 

  115. Lang MJ, Asbury CL, Shaevitz JW et al (2002) An automated two-dimensional optical force clamp for single molecule studies. Biophys J 83(1):491–501

    Article  CAS  Google Scholar 

  116. Farré A, Marsà F, Montes-Usategui M (2012) Optimized back-focal-plane interferometry directly measures forces of optically trapped particles. Opt Express 20(11):12270–12291

    Article  Google Scholar 

  117. Coffrey WT, Kalmykov XYP, Waldron JT (2004) The Langevin Equation, vol 14, 4th edn, World Scientific Series in Contemporary Chemical Physics. World Scientific, Singapore

    Book  Google Scholar 

  118. Kress H (2006) Cell mechanics during phagocytosis studied by optical tweezers-based microscopy. PhD thesis, University of Heidelberg, Cuvillier Verlag, Göttingen

    Google Scholar 

  119. Kress H (2006) Cell mechanics during phagocytosis studied by optical tweezers-based microscopy. pHD thesis, University of Heidelberg

    Google Scholar 

  120. Wang MC, Uhlenbeck GE (1945) On the theory of the Brownian motion II. Rev Mod Phys 17(2-3):323–342

    Article  Google Scholar 

  121. Purcell EM (1977) Life at low Reynolds-number. Am J Physics 45(1):3–11

    Article  Google Scholar 

  122. Brunner M, Dobnikar J, von Grunberg HH et al (2004) Direct measurement of three-body interactions amongst charged colloids. Phys Rev Lett 92(7):078301. doi:10.1103/PhysRevLett.92.078301

    Article  CAS  Google Scholar 

  123. Crocker JC, Matteo JA, Dinsmore AD et al (1999) Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys Rev Lett 82(21):4352–4355. doi:10.1103/PhysRevLett.82.4352

    Article  CAS  Google Scholar 

  124. Tränkle B, Speidel M, Rohrbach A (2012) Interaction dynamics of two colloids in a single optical potential. Phys Rev E Stat Nonlin Soft Matter Phys 86(2):021401

    Article  CAS  Google Scholar 

  125. Faucheux LP, Stolovitzky G, Libchaber A (1995) Periodic forcing of a Brownian particle. Phys Rev E 51(6):5239–5250

    Article  CAS  Google Scholar 

  126. Faucheux LP, Bourdieu LS, Kaplan PD et al (1995) Optical thermal ratchet. Phys Rev Lett 74(9):1504–1507. doi:10.1103/PhysRevLett.74.1504

    Article  CAS  Google Scholar 

  127. Nambiar R, Gajraj A, Meiners JC (2004) All-optical constant-force laser tweezers. Biophys J 87(3):1972–1980. doi:10.1529/biophysj.103.037697

    Article  CAS  Google Scholar 

  128. Guilford WH, Tournas JA, Dascalu D et al (2004) Creating multiple time-shared laser traps with simultaneous displacement detection using digital signal processing hardware. Anal Biochem 326(2):153–166

    Article  CAS  Google Scholar 

  129. Ruh D, Traenkle B, Rohrbach A (2011) Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction. Opt Express 19(22):21627–21642

    Article  CAS  Google Scholar 

  130. Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE Journal of Selected Topics in Quantum Electronics 2(4):1066–1076

    Article  CAS  Google Scholar 

  131. Visscher K, Block SM (1998) Versatile optical traps with feedback control. Methods Enzymol 298:460–489

    Article  CAS  Google Scholar 

  132. Valentine MT, Guydosh NR, Gutiérrez-Medina B et al (2008) Precision steering of an optical trap by electro-optic deflection. Opt Lett 33(6):599–601

    Article  Google Scholar 

  133. Fällman E, Axner O (1997) Design for fully steerable dual-trap optical tweezers. Appl Optics 36(10):2107–2113

    Article  Google Scholar 

  134. Akselrod G, Timp W, Mirsaidov U et al (2006) Laser-guided assembly of heterotypic three-dimensional living cell microarrays. Biophys J 91(9):3465–3473

    Article  CAS  Google Scholar 

  135. Čižmár T, Dalgarno H, Ashok P et al (2011) Optical aberration compensation in a multiplexed optical trapping system. Journal of Optics 13(4):044008

    Article  Google Scholar 

  136. Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816

    Article  CAS  Google Scholar 

  137. Padgett M, Bowman R (2011) Tweezers with a twist. Nat Photonics 5(6):343–348

    Article  CAS  Google Scholar 

  138. Oroszi L, Galajda P, Kirei H et al (2006) Direct measurement of torque in an optical trap and its application to double-strand DNA. Phys Rev Lett 97(5):058301

    Article  CAS  Google Scholar 

  139. La Porta A, Wang MD (2004) Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett 92(19):190801

    Article  CAS  Google Scholar 

  140. Friese M, Nieminen T, Heckenberg N et al (1998) Optical alignment and spinning of laser-trapped microscopic particles. Nature 394(6691):348–350

    Article  CAS  Google Scholar 

  141. Pedaci F, Huang Z, van Oene M et al (2011) Excitable particles in an optical torque wrench. Nat Phys 7(3):259–264

    Article  CAS  Google Scholar 

  142. Rohrbach A, Stelzer EH (2002) Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. Appl Optics 41(13):2494–2507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua W. Shaevitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Koch, M.D., Shaevitz, J.W. (2017). Introduction to Optical Tweezers. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics