Skip to main content
Log in

Where is photogrammetry heading to? State of the art and trends

  • Geodesy and Geomatics to the edge
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The objective of this paper is to highlight current trends in photogrammetry, trying to foresee where they will lead the discipline in the next years. To this aim, first some remarks on the challenges brought to photogrammetry by other sensors and a brief historical survey of some research topics, where an increasing convergence between photogrammetry and computer vision is apparent, will be presented. Then, a necessarily concise review of the advances in automation in three basic photogrammetric tasks (namely image orientation, surface reconstruction and object restitution) will be illustrated. The purpose of the review is to highlight how the fruitful dialog between photogrammetry and computer vision led to today’s achievements and to point out what kind of approaches seem to be winning in the search for viable and robust solutions in the automation of processes. Finally, the conclusions will look at this convergence in the perspective of academic career.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann F (1984) Digital image correlation: performance and potential application in photogrammetry. Photogramm Record 11(64):429–439

    Article  Google Scholar 

  • Ackermann F, Tsingas V (1994) Automatic digital aerial triangulation. In: ASPRS/ACSM Annual Convention, Reno, pp 1–12

  • Ahmadabadian AH, Robson S, Boehm J, Shortis M, Wenzel K (2013) A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs. ISPRS J Photogram Remote Sens 78:157–167

    Article  Google Scholar 

  • Armangué X, Salvi J (2003) Overall view regarding fundamental matrix estimation. Image Vis Comput 21:205–220

    Article  Google Scholar 

  • Awrangjeb M, Ravanbakhsh M, Fraser CS (2010) Automatic detection of residential buildings using LiDAR data and multi spectral imagery. ISPRS J Photogram Remote Sens 65(5):457–467

    Article  Google Scholar 

  • Baltsavias EP, Mason S, Stallmann D (1995) Use of DTMs/DSMs and orthoimages for building extraction. In: Gruen A, Kuebler O, Agouris P (eds) Automatic extraction of man-made objects from aerial and space images. Birkhaeuser Verlag, Basel, pp 199–210

    Chapter  Google Scholar 

  • Baltsavias EP, Li H, Gaschen S, Sinning M (1996) DTM generation with the Leica/Helava DPW 770 and VirtuoZo digital photogrammetric systems. GeoInformatics ’96, Wuhan, China, 16th to 19th October. pp 10–17

  • Baker S, Scharstein D, Lewis JP, Roth S, Black MJ, Szeliski R (2011) A database and evaluation methodology for optical flow. IJCV 92(1):1–31

    Article  Google Scholar 

  • Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Problems 14:R1–R54

    Article  Google Scholar 

  • Barazzetti L, Forlani G, Remondino F, Roncella R, Scaioni M (2011) Experiences and achievements in automated image sequence orientation for close-range photogrammetric projects. In: Proceedings of SPIE vol 8085. doi:10.1117/12.890116

  • Barazzetti L, Scaioni M, Remondino F (2010) Orientation and 3D modelling from markerless terrestrial images: combining accuracy with automation. Photogramm Record 25(132):356–381

    Article  Google Scholar 

  • Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. IJCV 12(1):43–77

    Article  Google Scholar 

  • Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226

    Article  Google Scholar 

  • Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: Speeded up robust features. CVIU 110(3):346–359

    Google Scholar 

  • Becker S, Haala N (2007) Combined feature extraction for façade reconstruction. Int Arch Photogramm Remote Sens Spatial Inf Sci XXXVI-3/W52: 241–247

  • Beis JS, Lowe DG (1997) Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. Proc CVPR 1997:1000–1006

    Google Scholar 

  • Bertram S (1963) Automatic map compilation system. US patent 5345086

  • Birchfield S, Tomasi C (1998) Depth discontinuities by Pixel-to-Pixel Stereo. In: Proceedings of Sixth IEEE International Conference on Computer Vision, pp 1073–1080

  • Birgisson B, Montepara A, Romeo E, Roncella R, Roque R, Tebaldi G (2009) An optical strain measurement system for asphalt mixtures. Mater Struct 42(4):427–441

    Article  CAS  Google Scholar 

  • BREC-Building Reconstruction (2014). http://www.virtualcitysystems.de. Accessed 14 Oct 2014

  • Brenner C (2005) Building reconstruction from images and laser scanning. Int J Appl Earth Obs 6(3–4):187–198

    Article  Google Scholar 

  • Bulatov D, Solbrig P, Gross H, Wernerus P, Repasi E, Heipke C (2011) Context-based urban terrain reconstruction from UAV-videos for geoinformation applicatins. Ann Photogramm Remote Sens Spatial Inf Sci I-3:185–190

    Article  Google Scholar 

  • Crosetto M, Pasquali P (2008) DSM generation and deformation measurement from SAR data. In: Baltsavias E, Li Z, Chen J (eds) Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences, Taylor & Francis, London, pp 157–167

  • Curlander JC, McDonough RN (1991) Synthetic aperture radar. Wiley Interscience, New York, USA

    Google Scholar 

  • Dang T, Jamet O, Maitre H (1994) Applying Perceptual Grouping and Surface Models to the detection and stereo reconstruction of Building in aerial Imagery. Int Arch of Photogramm Remote Sens 30(3):165–172

    Google Scholar 

  • Dorninger P, Pfeifer N (2008) A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 8(11):7323–7343

    Article  Google Scholar 

  • Duda RO, Hart PE (1973) Pattern Classification and Scene Analysis. A Wiley-Interscience Publication. John Wiley&Sons, New York

    Google Scholar 

  • Dunn E, Van Den Berg J, Frahm J M (2009) Developing visual sensing strategies through next best view planning. In: IROS 2009 IEEE/RSJ International Conference on, pp 4001–4008

  • Eisenbeiss H (2009) UAV Photogrammetry. Dissertation, ETHZ

  • English Heritage (2011) 3D laser scanning for heritage (2nd edn). Advice and guidance to users on laser scanning in archaeology and architecture. https://www.english-heritage.org.uk/publications/3d-laser-scanning-heritage2/3D_Laser_Scanning_final_low-res.pdf. Accessed 4 Jan 2015

  • Fassi F, Achille C, Fregonese L (2011) Surveying and modelling the main spire of Milan Cathedral using multiple data sources. Photogramm Rec 26(136):462–487

    Article  Google Scholar 

  • Fischler M, Bolles R (1981) Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun Assoc Comp Mach 24(3):81–95

    Google Scholar 

  • Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:631–665

    Article  Google Scholar 

  • FME-Feature Manipulation Engine (2014). http://www.safe.com. Accessed 13 Oct 2014

  • Forlani G, Pinto L, Scaioni M (1998) The TRIADIGIT program for AAT. Int Arch of Photogramm Remote Sens 32(2):67–73

    Google Scholar 

  • Forlani G, Nardinocchi C, Scaioni M, Zingaretti P (2006) Complete classification of raw LIDAR data and 3D-reconstruction of buildings. Pattern Anal Appl 8(4):357–374. doi:10.1007/s10044-005-0018-2

    Article  Google Scholar 

  • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  Google Scholar 

  • Förstner W (2002) Computer vision and photogrammetry—mutual questions: geometry, statistics and cognition. Bildteknik/Image Science, Swedish Society for Photogrammetry and Remote Sensing. pp 151–164

  • Förstner W (1982) On the geometric precision of digital correlation. Int Arch Photogramm 24(3):176–189

    Google Scholar 

  • Fua P, Leclerc YG (1996) Taking advantage of image-based and geometry-based constraints to recover 3-D surfaces. Comput Vis Image Understand 64(1):111–127

    Article  Google Scholar 

  • Gehrke S, Morin K, Downey M, Boehrer N, Fuchs T (2010) Semi-global matching: an alternative to LiDAR for DSM generation? Int Arch Photogramm Remote Sens Spatial Inf Sci 38(1):1–6

    Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans PAMI 6:721–741

    Article  CAS  Google Scholar 

  • Grigillo D, Kosmatin Fras M, Petrovič D (2011) Automatic extraction and building change detection from digital surface model and multispectral orthophoto. Geodetski vestnik 55:28–45

    Article  Google Scholar 

  • Grün A (1985) Adaptive least squares correlation: a powerful image matching technique. S Afr J Photogramm Remote Sens Cartogr 14(3):175–187

    Google Scholar 

  • Grün A, Baltsavias EP (1988) Geometrically constrained multiphoto matching. Photogramm Eng Remote Sens 54(5):633–641

    Google Scholar 

  • Grün A (2012) Development and status of image matching in photogrammetry. Photogramm Record 27(137):36–57

    Article  Google Scholar 

  • Grussenmeyer P et al. (2008) Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. Int Arch Photogramm Remote Sens Spatial Inf Sci. XXXVII/B5:213–218

  • Guarnieri A, Remondino F, Vettore A (2006) Digital photogrammetry and TLS data fusion applied to Cultural Heritage 3D modeling. Int Arch Photogramm Remote Sens Spatial Inf Sci XXXVI(5)

  • Gwinner K et al (2009) Derivation and validation of high-resolution digital terrain models from mars express HRSC data. PE RS 75(9):1127–1142

    Google Scholar 

  • Haala N, Kada M (2010) An update on automatic 3D building reconstruction. ISPRS J Photogramm Remote Sens 65:570–580

    Article  Google Scholar 

  • Habib AF, Ghanma MS, Tait M (2004) Integration of LIDAR and photogrammetry for close range applications. Int Arch Photogramm Remote Sens Spatial Inf Sci XXXV/B5:1045–1050

  • Hampel U, Maas H-G (2003) Application of digital photogrammetry for measuring deformation and cracks during load tests in civil engineering material testing. In: Grün (ed) 6th optical 3-D measurement techniques vol II, pp 80–88

  • Hartley R, Mundy JL (1993) Relationship between photogrammmetry and computer vision. In: Proceedings of SPIE 1944, p 14. doi: 10.1117/12.155818

  • Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Heipke C (1997) Automation of interior, relative, and absolute orientation. ISPRS J Photogram Remote Sens 52(1):1–19

    Article  Google Scholar 

  • Hemmleb M, Albertz J, Schubert M, Gleichmann A, Köhler JM (1996) Digital microphotogrammetry with the scanning electron microscope. Int Arch Photogramm Remote Sens 31(B5):225–230

    Google Scholar 

  • Henn A, Gröger G, Stroh V, Plümer L (2013) Model driven reconstruction of roofs from sparse LIDAR point clouds. ISPRS J Photogramm Remote Sens 76:17–29

    Article  Google Scholar 

  • Hirschmuller H (2008) Stereo processing by semiglobal matching and mutual information. IEEE Trans PAMI 30(2):328–341

    Article  Google Scholar 

  • Hobrough GL (1959) Automatic stereo plotting. Photogramm Eng 25(5):763–769

    Google Scholar 

  • Jaboyedoff M et al (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61(1):5–28

    Article  Google Scholar 

  • Javernick L, Brasington J, Caruso B (2014) Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology 213:166–182

    Article  Google Scholar 

  • James MR, Robson S (2012) Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J Geophys Res 117:F03017

    Google Scholar 

  • Kada M (2009) The 3D Berlin project. In: Fritsch D (ed) Photogrammetric week 2009. Wichmann Verlag, Heidelberg, pp 331–340

    Google Scholar 

  • Ke Y, Sukthankar R (2004) PCA-SIFT: A more distinctive representation for local image descriptors. CVPR 2004. In: Proceedings of the 2004 IEEE Computer Society Conference on (2) pp 506–513

  • Kerle N, Heuel S, Pfeifer N (2008) Real-time data collection and information generation using airborne sensors. In: Ziatanova, Li (eds) Geospatial information technology for emergency response. Taylor & Francis/Balkema, Leiden, pp 43–74

    Google Scholar 

  • Khoshelham K, Nardinocchi C, Frontoni E, Mancini A, Zingaretti P (2010) Performance evaluation of automated approaches to building detection in multi-source aerial data. ISPRS J Photogramm Remote Sens 65(1):123–133

    Article  Google Scholar 

  • Kirk RL et al (2008) Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: meter-scale slopes of candidate Phoenix landing sites. J Geophys Res 113:E00A24

    Google Scholar 

  • Kolbe TH, Nagel K, Stadler A (2009) CityGML—OGC standard for photogrammetry? In: Fritsch D (ed) Photogrammetric week ‘09, Wichmann, Heidelberg, pp 265–277

  • Krzystek P, Heuchel T, Hirt U, Petran F (1996) An integral approach to automatic aerial triangulation and automatic DEM generation. Int Arch Photogramm Remote Sens 31:405–414

    Google Scholar 

  • Lafarge F, Descombes X, Zerubia J, Pierrot-Deseilligny M (2010) Structural approach for building reconstruction from a single DSM. IEEE Trans PAMI 32(1):135–147

    Article  Google Scholar 

  • Lafarge F, Mallet C (2012) Creating large-scale city models from 3D-point clouds: a robust approach with hybrid representation. IJCV 99(1):69–85

    Article  Google Scholar 

  • Leberl F, Irschara A, Pock T, Meixner P, Gruber M, Scholz S, Wiechert A (2010) Point clouds: Lidar versus 3d vision. Photogramm Eng Remote Sens 76(10):1123–1134

    Article  Google Scholar 

  • Lewis KW, Aharonson O, Grotzinger JP, Kirk RL, McEwen AS, Suer TA (2008) Quasi-periodic bedding in the sedimentary rock record of Mars. Science 322(5907):1532–1535

    Article  CAS  Google Scholar 

  • Li R, Hwangbo J, Chen Y, Di K (2011) Rigorous photogrammetric processing of HiRISE stereo imagery for Mars topographic mapping. Geosci Remote S IEEE Trans 49(7):2558–2572

    Article  Google Scholar 

  • Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J (2010) Automatic reconstruction of tree skeletal structures from point clouds. ACM T Graph 29(6):151–158

    Article  Google Scholar 

  • Loizeau D, Mangold N, Poulet F, Ansan V, Hauber E, Bibring JP, Neukum G (2010) Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM. Icarus 205(2):396–418

    Article  CAS  Google Scholar 

  • Lowe D (2004) Distinctive image features from scale-invariant keypoints. IJCV 60(2):91–110

    Article  Google Scholar 

  • Lowe OG (1987) Three dimensional object recognition from single two dimensional images. Artif Intel 31:355–395

    Article  Google Scholar 

  • Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. IJCAI 81:674–679

    Google Scholar 

  • Luong Q-T, Faugeras OD (1996) Fundamental matrix: theory, algorithms, and stability analysis. IJCV 17(1):43–75

    Article  Google Scholar 

  • Luhmann T, Robson S, Kyle S, Harley I (2006) Close Range photogrammetry: principles methods and applications. Whittles Publishing, Dunbeath

    Google Scholar 

  • Mallet C, Bretar F (2009) Full-waveform topographic lidar: State-of-the-art. ISPRS J Photogramm Remote Sens 64(1):1–16

    Article  Google Scholar 

  • Mayer H, Reznik S (2005) Building facade interpretation from image sequences. Int Arch Photogramm Remote Sens Spatial Inf Sci 36 B3/W24:55–60

  • Middlebury1 http://vision.middlebury.edu/stereo/eval/. Accessed 14 Oct 2014

  • Middlebury2 http://vision.middlebury.edu/stereo/eval/. Accessed 14 Oct 2014

  • Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. PAMI 27(10):1615–1630

    Article  Google Scholar 

  • Mohan R, Nevatia R (1989) Using Perceptual Organization to extract 3D Structures. IEEE Trans PAMI 11(1):1121–1139

    Article  Google Scholar 

  • Moreira JMM, Nex F, Agugiaro G, Remondino F, Lim N J (2013) From DSM to 3D Building Models: a quantitative evaluation. Int Arch Photogramm Remote Sens Spatial Inf Sci XL1/W1:213–219

  • Morsdorf F, Meier E, Kötz B, Itten KI, Dobbertin M, Allgöwer B (2004) LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens Environ 92(3):353–362

    Article  Google Scholar 

  • Moussa A, El-Sheimy N (2012) A new object based method for automated extraction of urban objects from airborne sensors data. Int Arch Photogramm Remote Sens Spatial Inf Sci, XXXIX-B3:309–314

  • Nardinocchi C, Scaioni M, Forlani G (2001) Building Extraction from Lidar Data. In: Proc. IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Area, pp 79–84. doi:10.1109/DFUA.2001.985731

  • Nardinocchi C, Forlani G (2001) Building detection and roof extraction in laser scanning data. In: Gruen, Baltsavias, Van Gool (ed’s) Automatic extraction of man-made objects from aerial and space images. Balkema, Lisse, The Netherlands, pp 319–330

  • Nex F, Rinaudo F (2009) new integration approach of photogrammetric and lidar techniques for architectural surveys Int Arch Photogramm Remote Sens Spatial Inf Sci XXXVIII 3/W8:12–17

  • Neukum G et al (2004) Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature 432:971–979

    Article  CAS  Google Scholar 

  • Niemeyer J, Wegner JD, Mallet C, Rottensteiner F, Soergel U (2011) Conditional random fields for urban scene classification with full waveform LiDAR data. In: Stilla U et al. (ed) PIA 2011, LNCS 6952, pp 233–244

  • Nister D (2004) An efficient solution to the five-point relative pose problem. IEEE Trans PAMI 26(6):756–770

    Article  Google Scholar 

  • Okutomi M, Kanade T (1993) A multiple-baseline stereo. IEEE Trans on PAMI 15(4):353–363

    Article  Google Scholar 

  • Oude Elberink S, Vosselman G (2009) Building reconstruction by target based graph matching on incomplete laser data: analysis and limitations. Sensors 9(8):6101–6118

    Article  Google Scholar 

  • Pfeifer N, Gorte B, Winterhalder D (2004) Automatic reconstruction of single trees from terrestrial laser scanner data. Int Arch Photogramm Remote Sens Spatial Inf Sci XXXV/B5:114–119

  • Pierrot-Deseilligny M, Paparoditis N (2006) A Multiresolution And Optimization-Based Image Matching Approach: An Application To Surface Reconstruction From Spot5-Hrs Stereo Imagery. In IAPRS vol XXXVI-1/W41 in ISPRS Workshop On Topographic Mapping FromSpace (With Special Emphasis on Small Satellites). Ankara, Turkey

  • Pozzoli A, Mussio L, Scaioni M (2004) A solution for the general case of three-image orientation. Int Arch Photogramm Remote Sens Spatial Inf Sci 55(B3):992–997

    Google Scholar 

  • Pu S, Vosselman G (2009) Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS J Photogramm Remote Sens 64(6):575–584

    Article  Google Scholar 

  • Puente I, González-Jorge H, Arias P, Armesto J (2011) Land-based mobile laser scanning systems: a review. Int Arch Photogramm Remote Sens Spatial Inf Sci, XXXVIII-5/W12:163–168

  • Remondino F, El-Hakim S (2006) Image-based 3D modelling: a review. Photogramm Rec 21(115):269–291

    Article  Google Scholar 

  • Remondino F, Barazzetti L, Nex F, Scaioni M, Sarazzi D (2011) UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. Int Arch Photogramm Remote Sens Spatial Inf Sci 38(1)/C22:25–31

  • Remondino F, Spera MG, Nocerino E, Menna F, Nex F (2014) State of the art in high density image matching. Photogramm Rec 29(146):144–166

    Article  Google Scholar 

  • Roncella R, Re C, Forlani G (2011) Comparison of two structure and motion strategies. Int Arch Photogramm Remote Sens Spatial Inf Sci 38(5/W16):1–8 (CD-ROM)

  • Rosenberg P (1955) Information Theory and Electronic Photogrammetry. Photogramm Eng Remote Sens 21(4):543–555

    Google Scholar 

  • Rosenfeld A (2001) From image analysis to computer vision: an annotated bibliography, 1955–1979. CVIU 84(2):298–324

    Google Scholar 

  • Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. Proceedings of the European Conference on Computer Vision, Graz, Austria, pp 430–443

  • Rottensteiner F, Trinder J, Clode S, Kubik K (2005) Using the Dempster-Shafer method for the fusion of LIDAR data and multi-spectral images for building detection. Inf Fusion 6(4):283–300

    Article  Google Scholar 

  • Rottensteiner F, Sohn G, Gerke M, Wegner JD (2013) ISPRS test project on urban classification and 3D building reconstruction. http://www.itc.nl/ISPRS_WGIII4/docs/ComplexScenes.pdf. Accessed 14 Oct 2014

  • Roy S, Cox IJ (1998) A maximum-flow formulation of the N-camera stereo correspondence problem. In: Proc. IEEE ICCV, Bombay, pp 492–499

  • Rusu RB, Cousins S (2011) 3d is here: point cloud library (pcl). In: ICRA 2011, IEEE International Conference on, pp 1–4

  • Sansoni G, Trebeschi M, Docchio F (2009) State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors 9(1):568–601

    Article  Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    Google Scholar 

  • Scharstein D, Szeliski R (1998) Stereo matching with nonlinear diffusion. IJCV 28(2):155–174

    Article  Google Scholar 

  • Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47(1/2/3):7–42

  • Schenk T (1997) Towards automatic aerial triangulation. ISPRS J Photogramm Remote Sens 52(3):110–121

    Article  Google Scholar 

  • Schindler K, Förstner W (2014) Photogrammetry. In: Ikeuchi K (ed) Computer vision—a reference guide, Springer Reference. doi:10.1007/978-0-387-31439-6

  • Smith DE et al (2001) Mars orbiter laser altimetry: eperiment summary after the first year of global mapping of mars. J Geophys Res 106(E10):23689–23722

    Article  Google Scholar 

  • Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106(3):163–182

    Article  Google Scholar 

  • Thali MJ et al (2005) VIRTOPSY—scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning. J Forensic Sci 50(2):428–443

    Article  Google Scholar 

  • Torr P, Murray D (1997) The development and comparison of robust methods for estimating the fundamental matrix. IJCV 24(3):271–300

    Article  Google Scholar 

  • Torr P (2002) Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. IJCV 50(1):35–61

    Article  Google Scholar 

  • Toutin T (2004) Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-A, IKONOS-II, and QuickBird. Geosci Remote S, IEEE Trans 42(10):2121–2129

    Article  Google Scholar 

  • Vosselman GV, Maas HG (2010) Airborne and terrestrial laser scanning. Whittles Publishing, Dunbeath

    Google Scholar 

  • Weidner U, Förstner W (1995) Towards automatic building extraction from high resolution digital elevation models. ISPRS J Photogramm Remote Sens 50(4):38–49

    Article  Google Scholar 

  • Westoby MJ et al (2012) ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179:300–314

    Article  Google Scholar 

  • Williams RE (1959) The automatic map compilation system. Photogramm Eng 25(1):103–110

    Google Scholar 

  • Yastikli N, Jacobsen K (2005) Direct sensor orientation for large scale mapping—potential, problems, solutions. Photogramm Rec 20(111):274–284

    Article  Google Scholar 

  • Zhang Z, Deriche R, Faugeras O, Luong QT (1995) A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif Intel 78(1–2):87–119

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the Italian Ministry of University and Research within the project FIRB—Futuro in Ricerca 2010–Subpixel techniques for matching, image registration and change detection (RBFR10NM3Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Forlani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forlani, G., Roncella, R. & Nardinocchi, C. Where is photogrammetry heading to? State of the art and trends. Rend. Fis. Acc. Lincei 26 (Suppl 1), 85–96 (2015). https://doi.org/10.1007/s12210-015-0381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0381-x

Keywords

Navigation