Skip to main content
Log in

Biosynthesis, characterization and synergistic effect of phytogenic gold nanoparticles by marine picoeukaryote Picochlorum sp. in combination with antimicrobials

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

In the present work, gold nanoparticles (Au-NPs) have been successfully synthesized by the marine picoeukaryote, Picochlorum sp. The alga culture was used as a reductant for HAuCl4·3H2O resulting in the phytosynthesis of Au-NPs within 48 h. The algal biomass turned purple in color due to the phytogenic Au-NPs at intracellular level. The phytogenic Au-NPs are characterized by surface plasmon band observed close to 520 nm; the phytogenic Au-NPs accumulated in plastids with an average size of 11 nm. The strong signals of gold were reported in their corresponding EDX spectra. FTIR analysis revealed that polysaccharide and protein biomolecules in the algae cell do dual function of reducing the Au3+ ions and stabilizing the phytogenic Au-NPs. In combination with ampicillin (10 µg), gentamicin (10 µg), amphotericin B (25 µg), the phytogenic Au-NPs exerted an outstanding antimicrobial effect and biocidal action against the tested Gram-positive, Gram-negative bacteria and the tested fungal pathogens. This study suggested that the different bioactive compounds reported in the FTIR profile of the phytogenic Au-NPs along with the presence of different fatty acids may play an important role in the synergistic antimicrobial effect of the phytogenic Au-NPs produced by Picochlorum sp. These results not only provide a green approach for the synthesis of Au-NPs but also open a door for new pharmaceutical leads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad T, Wani IA, Lone IH et al (2013) Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater Res Bull 48:12–20

    Article  CAS  Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B 103:283–287

    Article  CAS  Google Scholar 

  • Benning LG, Phoenix VR, Yee N, Tobin MJ (2004) Molecular characterization of Cyanobacterial silification using synchrotron infrared micro-spectroscopy. Geochim Cosmochim Acta 68:729–741

  • Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    Article  CAS  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  Google Scholar 

  • Burygin GL (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794–801

    Article  CAS  Google Scholar 

  • Chakraborty N, Pal R, Ramaswami A et al (2006) Diatom: a potential bio-accumulator of gold. J Radioanal Nucl Chem 270:645–649

    Article  CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S et al (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon. J Appl Phycol 21:145–152

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  • Chisti Y (2010) Fuels from microalgae. Biofuels 1:233–235

    Article  CAS  Google Scholar 

  • Chisti Y, Moo-Young M (1986) Disruption of microbial-cells for intracellular products. Enzyme Microbiol Technol 8:194–204

    Article  CAS  Google Scholar 

  • Choi JS, Park NH, Hwang SY et al (2013) The antibacterial activity of various saturated and unsaturated fatty acids against several oralpathogens. J Environ Biol 34(4):673–676

    Google Scholar 

  • Chwalibog A, Sawosz E, Hotowy A et al (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J nanomedicine 5:1085–1094

    Article  Google Scholar 

  • Cox S, Abu-Ghannam N, Gupta S (2010) An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int Food Res 17:205–220

  • Dean AP, Martin MC, Sigee DC (2007) Resolution of codominant phytoplankton species in a eutrophic lake using synchrotron-based Fourier transform infrared spectroscopy. Phycologia 46(2):151–159

    Article  Google Scholar 

  • Desbois AP, Lebl T, Yan LA, Smith VJ (2008) Isolation and structural characterization of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl Microbial Biotechnol 81:755–764

    Article  CAS  Google Scholar 

  • Desbois AP, Mearns-Spragg A, Smith VJ (2009) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol 11:45–52

    Article  CAS  Google Scholar 

  • El-Kassas HY (2013) Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions. Egypt J Aquat Res 39:233–239

    Article  Google Scholar 

  • Giordano M, Kansiz M, Heraud P, Beardall J, Wood B, McNaughton D (2001) Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine alga Chaetoceros muellerii (Bacillariphyceae). J Phycol 37:271–279

    Article  CAS  Google Scholar 

  • Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Using biofunctional magnetic nanoparticles to capture vancomycin-resistant Enterococci and other gram-positive bacteria at ultra low concentration. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  • Haider AJ, Mohammed MR, Al-Mulla EAJ, Ahmed DS (2014) Synthesis of silver nanoparticle decorated carbon nanotubes and its antimicrobial activity against growth of bacteria. Rend Fis Acc Lincei. doi:10.1007/s12210-014-0300-6

    Google Scholar 

  • Kalabegishvili T, Kirkesali E, Frontasyeva, MV et al (2012) Synthesis of Gold Nanoparticles by blue-green algae Spirulina platensis. In: Proceedings of the international conference nanomaterials: applications and properties, Vol 1 No 2, 02NNBM09

  • Krishnamurthy NB, Nagaraj B, Malakar B et al (2012) Green synthesis of gold nanoparticles using Tagetes erectal L. (Mari Gold) Flower extract & evaluation of their antimicrobial activities. Int J Pharm Bio Sci 3:212–221

    CAS  Google Scholar 

  • Leid JG, Andrew J, Ditto AJ et al (2012) In vitro antimicrobial studies of silver carbine complexes: activity of free and nanoparticle carbine formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67:138–148

    Article  CAS  Google Scholar 

  • Li X, Xu H, Chen Z, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomat 2011: Article ID 270974, p 16

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG (2005) White sides GM: self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170

    Article  CAS  Google Scholar 

  • Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG (2011) Gold nanoparticles produced in a microalga. J Nanopart Res 13:6439–6445

    Article  CAS  Google Scholar 

  • Molina Grima E, Belarbi E-H, Acién Fernández FG et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  Google Scholar 

  • Mubarakali D, Gopinath V, Rameshbabu N, Thajuddin N (2012) Synthesis and characterization of cds nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 74:8–11

    Article  CAS  Google Scholar 

  • Naveena BE, Prakash S (2013) Biological synthesis of gold nanoparticles using marine algae gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res 6:179–182

    Google Scholar 

  • Nayak D, Nag M, Banerjee S et al (2006) Preconcentration of 198Au in a green alga, Rhizoclonium. J Radioanal Nucl Chem 268:337–340

    Article  CAS  Google Scholar 

  • Nirmala Grace A, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloids Surf A 297:63–70

    Article  Google Scholar 

  • Ohta S, Chang T, Kawashima A et al (1994) Anti methicillin-resistant Staphylococcus aureus (MRSA)activity by linolenic acid isolated from the marine microalga Chlorococcum HS-101. Bull Environ Contam Toxicol 52:673–680

    Article  CAS  Google Scholar 

  • Pandian M, Marimuthu R, Natesan G et al (2013) Development of biogenic silver nano particle from Pelargonium graveolens leaf extract and their antibacterial activity. Am J Nanosci Nanotechnol 1(2):57–64

    Article  Google Scholar 

  • Parial D (2014) Green synthesis of gold nanoparticles using cyanobacteria and their characterization. Botany 4:69–72

    Google Scholar 

  • Parial D, Patra HK, Dasgupta AK, Pal R (2012a) Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol 47:22–29

    Article  CAS  Google Scholar 

  • Parial D, Patra HK, Roychoudhury P et al (2012b) Gold nanorod production by cyanobacteria—a green chemistry approach. J Appl Phycol 24:55–60

    Article  CAS  Google Scholar 

  • Perni S (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93

    Article  CAS  Google Scholar 

  • Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2009) Functionalized gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 28:207–213

    Article  Google Scholar 

  • Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798

    Article  CAS  Google Scholar 

  • Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how are synthesized and their applications. Metal nanoparticles in microbiology. Springer, Berlin, pp 1–14

    Google Scholar 

  • Ravishankar Rai V, Jamuna Bai A (2011) Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, p 197–209

  • Rosi NL, Giljohann DA, Thaxton CS et al (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2004) Microbial nanoparticle production. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, pp 126–135

    Google Scholar 

  • Sharma V, Park K, Srinivasa rao M (2009) Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater Sci Engin 65:1–3

    Article  Google Scholar 

  • Sigee DC, Dean A, Levado E, Tobin MJ (2002) Fourier-transform infrared spectroscopy of Pediastrum duplex: characterization of a micro-population isolated from a eutrophic lake. Eur J Phycol 37:19–26

    Article  Google Scholar 

  • Stuart B (1997) Biological applications of infrared spectroscopy. Wiley, Chichester, pp 25–180

    Google Scholar 

  • Tan YN, Lee KH, Su X (2011) Study of single-stranded dna binding protein-nucleicacid interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms. Anal Chem 83:4251–4257

    Article  CAS  Google Scholar 

  • Valodkar M, Rathore PS, Jadeja RN et al (2012) Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. J Hazard Mater 201:244–249

    Article  Google Scholar 

  • Vijayaraghavan GR, David S, Bermudez-Allende M, Sarwat H (2011) Imaging-guided parenchymal liver biopsy: how we do it. J Clin Imaging Sci 1:30

    Article  Google Scholar 

  • Walne PR (1970) Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilis. Fish Invest 26:162

    Google Scholar 

  • Yun SM, Jang JH, Lee JS (2007) Isolation and identification of an antibacterial substance from sea mustard, Undaria pinntifida, for Streptococcus mutans. J Korean Soc Food Sci Nutr 36(2):149–154

    Article  CAS  Google Scholar 

  • Zawrah MF, Abd el-moez SI (2011) Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci 8(4):37–44

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Elziny Ebid, Department of Chemistry, Faculty of Science, Tanta University for providing the metal salt (HAuCl4·3H2O).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. El-Sheekh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sheekh, M.M., El Kassas, H.Y. Biosynthesis, characterization and synergistic effect of phytogenic gold nanoparticles by marine picoeukaryote Picochlorum sp. in combination with antimicrobials. Rend. Fis. Acc. Lincei 25, 513–521 (2014). https://doi.org/10.1007/s12210-014-0341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0341-x

Keywords

Navigation