Skip to main content

Advertisement

Log in

Evolution of the oceanic and continental crust during Neo-Proterozoic and Phanerozoic

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

In present, contribution paleogeographical maps for the time interval 0.6 Ga BP to present are analyzed in terms of (a) the ratio between continental to oceanic crust areas in order to estimate the speed of continental growth and (b) the surface motion of continental plates under the influence of global forces of tidal friction and Eötvös force (“pole-fleeing”). It is concluded that the area of the continents during the Phanerozoic was growing and it exhibited a rate ~0.5 km3/year. It is also found that beside the westward-oriented tidal frictional forces the Eötvös force can play also a role in tectonical processes. It is shown that the continental plates on average tend to find a position close to the equator during the whole investigated 600 Ma time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:457–466

    Article  CAS  Google Scholar 

  • Blakey R (2010) http://jan.ucc.nau.edu/~rcb7/paleogeographic.html (all maps are copyright to R. Blakey, NAU Geology)

  • Bostrom RC (1971) Westward displacement of the lithosphere. Nature 234:356–538

    Article  Google Scholar 

  • Bostrom RC (2000) Tectonic consequences of the Earth’s rotation. University Press, Oxford

    Google Scholar 

  • Bowring SA, Housh T (1995) The Earth’s early evolution. Science 269(5230):1535–1540

    Article  CAS  Google Scholar 

  • Caputo M (1986) The Polfluchtkraft revisited. Bollettino Geofisica Teorica Applicata, XXVIII: 111–112, 199–214

  • Condie KC (1997) Plate tectonics and crustal evolution, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Condie KC (2011) Earth as an evolving system. Academic Press, New York

    Google Scholar 

  • Crespi M, Cuffaro M, Doglioni C, Giannone F, Riguzzi F (2007) Space geodesy validation of the global lithospheric flow. Geophys J Int 168(2):491–506

    Article  Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology. Wiley, New York

    Google Scholar 

  • Denis C, Schreider AA, Varga P, Závoti J (2002) Despinning of the Earth rotation in the geological past and geomagnetic paleointensities. J Geodyn 34(5):97–115

    Article  Google Scholar 

  • de Zegers TE, Wit MJ, Dann J, White SH (1998) Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological, and paleomagnetic test. Terra Nova 10:250–259

    Article  Google Scholar 

  • Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A Change in the geodynamics of continental growth 3 billion years ago. Science 335(6074):1334–1336

    Article  CAS  Google Scholar 

  • Doglioni C (2008) Comment on “The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle” by W.P. Schellart. Tectonophysics 463(1–4):208–213

    Google Scholar 

  • Doglioni C, Carminati E, Cuffaro M, Scrocca D (2007) Subduction kinematics and dynamic constraints. Earth Sci Rev 83:125–175

    Article  Google Scholar 

  • Doglioni C, Ismail-Zadeh A, Panza G, Riguzzi F (2011) Lithosphere-asthenosphere viscosity contrast and decoupling. Phys Earth Planet Inter 189:1–8

    Article  Google Scholar 

  • Eötvös L (1913) Verhandlungen der 17. Allg Konf Int Erdmess 1:111

    Google Scholar 

  • Flament N, Coltice N, Rey PF (2008) A case for late-archaean continental emergence from thermal evolution models and hypsometry. Earth Planet Sci Lett 275:326–336

    Article  CAS  Google Scholar 

  • Gasperini M (1993) Global forces ont he lithosphere. J Geodyn 17(3):121–132

    Article  Google Scholar 

  • Gasperini M, Chierici F (1996) The Eotvos force revisited. Terra Nova 8(4):356–360

    Article  Google Scholar 

  • Goedecke GH, Ni JF (1991) Eötvös force on the lithosphere. Tectonophysics 187(1–3):251–257

    Article  Google Scholar 

  • Grafarend EW, Krumm FW (2006) Map projections, Cartographic Information Systems. Springer, Berlin

    Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50:1185–1204

    Article  CAS  Google Scholar 

  • Hallam A (1989) The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philos Trans Royal Soc B 325:437–455

    Article  Google Scholar 

  • Haq B, Hardenbol J, Vail P (1987) Chronology of fluctuating sea level since Triassic (250 million years to present). Science 235:156–1167

    Article  Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models, Second edn. Springer, Berlin

    Book  Google Scholar 

  • Korenaga J (2008) Plate tectonics, flood basalts and evolution of Earth’s oceans. Terra Nova 20:419–438

    Article  Google Scholar 

  • Monin AS, Shiskov UA (1979) Istorija klimata (The history of climate). Gidrometeoizdat, Leningrad

    Google Scholar 

  • Morrow E, Mitrovica JX, Forte AM, Glisovic P, Huybers P (2012) An enigma of the Earth’s dynamic ellipticity. Geophys J Int 191:1129–1134

    Google Scholar 

  • Motaghi K, Tatar M, Priestley K, Romanelli F, Doglioni C (2014) The deep structure of the Iranian Plateau, paper submitted to Gondwana Research

  • Piper JDA (2013a) Continental velocity through precambrian times: the link to magmatism, crustal accretion and episodes of global cooling. Geosci Front 4(1):7–36

    Article  CAS  Google Scholar 

  • Piper JDA (2013b) A planetary perspective on Earth evolution: lid tectonics before plate tectonics. Tectonophysics 589:44–56

    Article  Google Scholar 

  • Riguzzi F, Panza G, Varga P, Doglioni C (2010) Can Earth’s rotation and tidal despinning drive plate tectonics? Tectonophysics 484(1–4):60–73

    Article  Google Scholar 

  • Rino S, Kon Y, Sato W, Maruyama S, Santosh M, Zhao D (2008) The Grenvillian and Pan-African orogens: World’s largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Res 14:51–72

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2002) Configuration of Columbia, a mesoproterozoic supercontinent. Gondwana Res 5:5–22

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2003) Supercontinents in Earth history. Gondwana Res 6:357–368

    Article  Google Scholar 

  • Ross CA, Ross, JRP (1988) Late Paleozoic transgressive-regressive deposition. In: Wilgus CK, Hastings BJ, Posamentier H, van Wagoner JC, Ross CA, Kendall CGSC (eds). Sea-level change: an integrated approach. SEPM Spec. Pub. 42: 71-108

  • Scotese CR (2004) A continental drift flipbook. J Geol 112:729–741

    Article  Google Scholar 

  • Snyder JP, Voxland PM (1989) An album of map projections. U.S. Geological Survey Professional Paper 1453. United States Government Printing Office, Washington

    Google Scholar 

  • Tanimoto T, Lay T (2000) Mantle dynamics and seismic tomography. Proc Natl Acad Sci 97(23):12409–12410

    Article  CAS  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. University Press, Cambridge

    Book  Google Scholar 

  • Varga P (2006) Temporal variation of geodynamical properties due to tidal friction. J Geodyn 41:140–146

    Article  Google Scholar 

  • Varga P, Krumm FW, Doglioni C, Grafarend EW, Panza G, Riguzzi F, Schreider AA, Sneeuw N (2012) Did a change in tectonic regime occur between the Phanerozoic and earlier Epochs? Rendiconti Lincei Fis Nat 23(2):139–148

    Article  Google Scholar 

  • Yanick R, Doglioni C, Sabadini R (1991) Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. J Geophys Res 96(B5):8407–8415

    Article  Google Scholar 

  • Zhang Z, Teng J, Romanelli F, Braitenberg C, Ding Z, Zhang X, Fang L, Zhang S, Wu J, Deng Y, Ma T, Sun R, Panza GF (2014) Geophysical constraints on the link between cratonization and orogeny: Evidence from the Tibetan Plateau and the North China Craton. Earth Sci Rev 130:1–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank EA Rogozhin and an anonymous reviewer for comments and suggestions for improvement of the manuscript. This work was completed during the Alexander-von-Humboldt Foundation sponsored stay of P Varga at the Geodetic Institute of Stuttgart University and received financial support from the Hungarian Science Found OTKA (Project No. K109060). The authors are grateful to B Süle for his valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Varga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, P., Krumm, F.W., Grafarend, E.W. et al. Evolution of the oceanic and continental crust during Neo-Proterozoic and Phanerozoic. Rend. Fis. Acc. Lincei 25, 255–263 (2014). https://doi.org/10.1007/s12210-014-0298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0298-9

Keywords

Navigation