Skip to main content
Log in

The Last Global Transgression of the World Ocean: Glacio-Eustasy or Tectonics?

  • Published:
Geotectonics Aims and scope

Abstract

The article substantiates the conclusion about the tectonic nature of the last global transgression of the World Ocean. It is based on the results of marine studies in which complete sections of transgression sediments were obtained that were separated from their substrate by the diachronous boundary of a stratigraphic uncomformity or those beginning with littoral facies. The radiocarbon dating of such sections at different levels made it possible to calculate the average rate of relative sea level rise by plotting the radiocarbon age of sediments against depth from the seafloor surface. This was constructed based on three reference areas: the underwater slope of the island of Barbados, the North Sea shelf, and the Barents Sea shelf. It was revealed that the average rates of relative sea level rise at different points in the same water area sometimes differ by an order of magnitude, which is incompatible with the eustatic nature of transgression. The maximum transgression amplitudes in the Barents and North seas are several times higher than those permissible for glacio-eustasy. It is assumed that tectonic subsidence of the area due to the planetary nature of the last marine transgression overlapped its immersion, associated with the incomplete formation of the youngest oceanic depressions of the planet located north of the submarine Greenland–Scotland Ridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. V. Belousov, Main Problems of Geotectonics (Gosgeoltekhizdat, Moscow, 1954) [in Russian].

    Google Scholar 

  2. E. N. Bylinskii, Glacioisostatic Effects on the Pleistocene Evolution of the Earth (TsNIGRI, Moscow, 1996) [in Russian].

  3. E. V. Ivanova, I. O. Murdmaa, E. A. Emel’yanov, E.  A. Seitkalieva, E. P. Radionova, G. N. Alekhina, and S. M. Sloistov, “Postglacial paleoceanographic environments in the Barents and Baltic seas,” Oceanology 56, 118–130 (2016).

    Google Scholar 

  4. R. B. Krapivner, “Origin of diamictons of the Barents Sea shelf,” Lithol. Miner. Resour. 44, 120–134 (2009).

    Google Scholar 

  5. R. B. Krapivner, Crisis of the Glacial Theory: Arguments and Facts (GEOS, Moscow, 2018) [in Russian].

    Google Scholar 

  6. K. K. Markov and I. A. Suetova, Eustatic Oscillations of the Ocean Level (Nauka, Moscow, 1965), pp. 143–146.

    Google Scholar 

  7. N. I. Nikolaev, Neotectonics and Its Expression in the Structure and Relief within the USSR (Gosgeoltekhizdat, Moscow, 1962) [in Russian].

    Google Scholar 

  8. Yu. A. Pavlidis, S. L. Nikiforov, S. A. Ogorodov, and G. A. Tarasov, “The Pechora Sea: Past, present, and future,” Mor. Geol. 47, 927–939 (2007).

    Google Scholar 

  9. “The North Sea,” in Oceanographic Encyclopedia (Gidrometeoizdat, Leningrad, 1974), pp. 446–453.

  10. The Arctic Ocean and Its Coasts in the Cenozoic, Ed. by A. I. Tolmachev (Gidrometizdat, Leningrad, 1970) [in Russian].

    Google Scholar 

  11. R. J. Hurley, “Geological studies of the West Indies,” in Proceedings of the Symposium “Continental Margins and Island Arcs,” Ottawa, Canada, 1965, pp. 158–167.

  12. M. Hoshino, Marine Geology (1983) [in Japanese].

  13. T. Bard, B. Hamelin, R. G. Fairbanks, and F. Zindler, “Calibration of the 14C timescale over the past 30000 years using mass spectrometric U-Th ages from Barbados corals,” Nature 345, 405–410 (1990).

    Google Scholar 

  14. T. Bard, B. Hamelin, and R. G. Fairbanks, “U-Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130,000 years,” Nature 346, 456–458 (1990).

    Google Scholar 

  15. G. Butenko and S. R. Østmo, “The importance of multidisciplinary geoscience investigations for ingineering projects in the Osberg, Brage and Troll fields,” Quaternary Engineering Geology, Vol. 7 of Geol. Soc. London, Eng. Geol. Spec. Publ., Ed. by A. Forster, M. G. Culshaw, J. C. Cripps, J. A. Little, and C. F. Moon (London, 1991), pp. 195–202.

  16. A. Elverhøi and K. Bomstad, Late Weichselian Glacial and Glaciomarine Sedimentation in the Western, Central Barents Sea (Norsk Polaristitutt, Oslo, 1980).

    Google Scholar 

  17. A. Elverhøi, J. I. Svendsen, A. Solheim, E. S. Andersen, J. Millman, J. Magerud, and R. LeB. Hooke, “Late Quaternary sediment yield from the high arctic Svalbard area,” J. Geol. 103, 1–17 (1995).

    Google Scholar 

  18. R. G. Fairbanks, “A 17,000-year glacio-eustatic sea-level record: Influence of glacial melting rates on the Younger Dryas events and deep-ocean circulation,” Nature 342, 637–642 (1989).

    Google Scholar 

  19. M. Hald, V. Kolstad, L. Polyak, S. L. Forman, F.  A. Herlihy, G. Ivanov, and A. Nescheretov, “Late-glacial and Holocene paleoceanography and sedimentary environments in the St. Anna Trough, Eurasian Arctic Ocean margin,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 146, 229–249 (1999).

    Google Scholar 

  20. R. B. Krapivner, “Moraine-like loams of the Pechora lowland — sediments of long-frozen seas,” Int. Geol. Rev. 17, 311–318 (1975).

    Google Scholar 

  21. D. K. Kristensen, T. L. Rasmussen, and N. Koç, “Palaeoceanographic changes in the northern Barents Sea during the last 16 000 years - new constraints on the last deglacation of the Svalbard–Barents Sea Ice Sheet,” Boreas 42, 798–813 (2012).

    Google Scholar 

  22. S. J. Lehman, G. A. Jones, L. D. Keigwin, E. S. Andersen, G. Butenkoi, and S.-R. Østmo, “Initiation of Fennoscandian ice-sheet retreat during the last deglaciation,” Nature 349, 513–516 (1991).

    Google Scholar 

  23. S. J. Lehman and L. D. Keigwin, “Sudden changes in North Atlantic circulation during the last deglaciation,” Nature 356, 757–762 (1992).

    Google Scholar 

  24. D. J. Lubinski, L. Polyak, and S. L. Forman, “Freshwater and Atlantic water inflow to the deep northern Barents and Kara seas since ca 14C ka: Foraminifera and stable isotopes,” Quat. Sci. Rev. 20, 1851–1879 (2001).

    Google Scholar 

  25. G. V. Middleton, “Second International Research Symposium on clastic tidal deposits,” Geosci. Can. 16, 246–247 (1984).

    Google Scholar 

  26. I. Murdmaa, E. Ivanova, J.-C. Duplessy, M. Levitan, T. Khusid, M. Bourtman, G. Alekhina, T. Alekseeva, M. Belousov, and V. Serova, “Facies system of Eastern Barents Sea since the last glaciation to present,” Mar. Geol. 230, 275–303 (2006).

    Google Scholar 

  27. L. Polyak and A. Solheim, “Late and postglacial environments in the northern Barents Sea west of Franz Josef Land,” Polar Res. 13, 197–207 (1994).

    Google Scholar 

  28. L. Polyak, S. J. Lehman, V. Gataullin, and A. J. T. Jull, “Two-step deglaciation of the southern Barents Sea,” Geology 23, 567–571 (1995).

    Google Scholar 

  29. L. Polyak, S. L. Forman, F. A. Herlihy, G. Ivanov, and P. Krinytsky, “Late Weichselian deglacial history of the Svyataya (Saint) Anna Trough, Northern Kara Sea, Arctic Russia,” Mar. Geol. 143, 169–188 (1997).

    Google Scholar 

  30. L. Polyak, V. Gataullin, O. Okuneva, and V. Stelle, “New constrains on the limits of the Barents–Kara ice sheet during the Last Glacial Maximum based on borehole stratigraphy from the Pechora Sea,” Geology 28, 611–614 (2000).

    Google Scholar 

  31. L. Polyak, F. Niessen, V. Gataullin, and V. Gainanov, “The eastern extent of the Barents–Kara ice sheet during the Last Glacial Maximum based on seismic-reflection data from eastern Kara Sea,” Polar Res. 27, 162–174 (2008).

    Google Scholar 

  32. T. L. Rasmussen, E. Thomsen, M. Śludowska, S. Jessen, A. Solheim, and N. Koç, “Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP,” Quat. Res. 67, 100–114 (2007).

    Google Scholar 

  33. T. L. Rasmussen and E. Thomsen, “Palaeoceanographic development in Storfiorden, Svalbard, during the deglaciation and Holocene: Evidence from benthic foraminiferal records,” Boreas 44, 24–44 (2015).

    Google Scholar 

  34. L. Rise and K. Rokoengen, “Surficial sediments in the Norwegian sector of the North Sea between 60°30′ and 62° N,” Mar. Geol. 58, 287–317 (1984).

    Google Scholar 

  35. N. J. Shackleton, J. Backman, H. Zimmerman, D.  V. Kent, M. A. Hall, D. G. Roberts, D. Schnitker, J. G. Baldauf, A. Desprairies, R. Homrighausen, P. Huddlestun, J. B. Keene, A. J. Kaltenback, K. A. O. Krumsiek, A. C. Morton, et al., “Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region,” Nature 307, 620–623 (1984).

    Google Scholar 

  36. I. Steers, The Coastline of England and Wales, 2nd ed. (Cambridge. Univ. Press, New York, 1964).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is sincerely grateful to E.A. Gusev (VNIIOkeangeologiya, St. Petersburg) and V.D. Zarhidze (VSEGEI, St. Petersburg) for valuable advice and comments during the discussion of the problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Krapivner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krapivner, R.B. The Last Global Transgression of the World Ocean: Glacio-Eustasy or Tectonics?. Geotecton. 54, 477–493 (2020). https://doi.org/10.1134/S0016852120040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120040056

Keywords:

Navigation