Skip to main content
Log in

Biomass, nutrients and nutritive value of Persicaria salicifolia Willd. in the water courses of Nile Delta, Egypt

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

In the present study, we evaluate the biomass and nutritive value of the living and dead shoots of Persicaria salicifolia and their capacity to accumulate heavy metals and nutrients to be used as phytoremediator. The living and dead parts attained their highest phytomass during autumn. The dead parts accumulated higher amounts of copper, manganese and zinc than the living parts. On the other hand, the living parts had higher amounts of carbohydrates, ether extract, crude fibers and total protein. Due to its higher nutritive value, the living parts were considered excellent forage. Furthermore, the plant in the drains accumulates more nutrients and heavy metals than that in the canals. Some constituents (calcium, iron, digestible crude protein and crude fibers) had significant positive correlation with phytomass. The ability of the dead parts of P. salicifolia to accumulate higher values of nutrients renders this plant as a powerful phytoremediator for removal of pollutants from the aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Basset R, Issa AA, Adam MS (1995) Chlorophyllase activity: effect of heavy metals and calcium. Photosynth 31:421–425

    CAS  Google Scholar 

  • Abu Al-Azz MS (1971) Land Forms of Egypt. The American University in Cairo Press, Dar Al-Maaref, Cairo, p 281

    Google Scholar 

  • Adesogon AT, Givens DI, Owen E (2000) Measuring chemical composition and nutritive value in forages. In: t’Mannetje L, Jones RM (eds), Field and laboratory methods for grassland and animal production research. CABI Publishing, Wallingford, Oxon

  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell Scientific Publications, London

    Google Scholar 

  • Anonymous (1975) Energy allowances and feeding system for ruminants. Ministry of Agriculture, Fisheries and Food. London, Her Majesty’s Stationary Office, Technical Bulletin, p 33

  • Baldantoni D, Alfani A, Di Tommasi P, Bartoli G, Virzo De Santo A (2004) Assessment of macro and microelement accumulation capability of two aquatic plants. Environ Pollut 130:149–156

    Article  CAS  Google Scholar 

  • Borkert CM, Cox FR, Tucker MR (1998) Zinc and copper toxicity in peanut, soybean, rice and corn in soil mixtures. Comm Soil Sci Plant Ana 29:2991–3005

    Google Scholar 

  • Boudet G, Riviere R (1968) Emploi practique des analyses fourageres pour l’appreciation pasturages tropicaux. Revue d’Elevage et de Medecine Veterinaire des Pays Tropicaux 2(21):227–266

    Google Scholar 

  • Boulos L (1999) Flora of Egypt, vol 1. Al-Hadara Publ, Cairo, p 419

    Google Scholar 

  • Brandbyge J (1993) Polygonaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, Heidelberg, pp 531–544

    Google Scholar 

  • Calheiros CSC, Duque AF, Moura A, Henriques IS, Correia A, Rangel AOSS, Castro PML (2009) Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment. Bioresour Technol 100:3228–3235

    Google Scholar 

  • Chanda S, Bhaduri SK, Sarder D (1991) Chemical characterization of pressed fibrous residues of four aquatic weeds. Aqua Bot 42:81–85

    Article  CAS  Google Scholar 

  • Chapin FS, Mckendrick JD, Johnson DA (1986) Seasonal changes in carbon fractions in Alaskan tundra plants of differing growth forms: implication for herbivory. J Ecol 74:707–731

    Article  CAS  Google Scholar 

  • Chauhan TR, Gill RS, Ichhponani JS (1980) Nutritive value of berseem and clusterbean forages. Ind J Anim Sci 50(12):1052–1055

    Google Scholar 

  • Cronk JK, Fennessy MS (2001) Wetlands plants: biology and ecology. Lewis Publisher, Boca Raton

    Book  Google Scholar 

  • Demarquilly C, Weiss P (1970) Tableau de la valeur alimentaire des fourrages. Et. 42: Versailles INRA-SEI, Paris

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40

    Article  CAS  Google Scholar 

  • Dhir B, Sharmila P, Pardah Saradhi P (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Tech 39:754–781

    Article  CAS  Google Scholar 

  • Eid EM, Shaltout KH, Al-Sodany YM, Soetaert K, Jensen K (2010) Modeling growth carbon allocation and nutrient budget of Phragmites australis in Lake Burullus, Egypt. Wetland 30:240–251

    Article  Google Scholar 

  • Eid EM, Shaltout KH, EL-Sheikh MA, Asaeda T (2012) Seasonal courses of nutrients and heavy metals in water, sediment and above-and below-ground Typha domingensis biomass in Lake Burullus (Egypt): perspectives for phytoremediation. Flora 207:783–794

    Article  Google Scholar 

  • El-Beheiry MH, El-Kady HF (1998) Nutritive value of two Tamarix species in Egypt. J Arid Environ 38:529–539

    Article  Google Scholar 

  • El-Darier S, Sadek L (1996) Growth analysis and bioaccumulation of nutrient elements in the ecosystem of Eichhornia crassipes (Mart.) Solms-Laub. Des Inst Bull 46(1):71–89

    Google Scholar 

  • El-Kady H (2002) Seasonal variation in phytomass and nutrient status of Phragmites australis along the water courses in the Middle Delta region. Taekholmia 20(2):123–138

    Google Scholar 

  • Garrett WN (1980) Energy utilization of growing cattle as determined in seventy-two comparative laughter experiments. In: Mount LE (ed) Energy metabolism. EAAP Publication No. 26, London

    Google Scholar 

  • Ghaderian SM, Ravandi AAG (2012) Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area. Iran J Geochem Expl 123:25–32

    Article  CAS  Google Scholar 

  • Ghaderian SM, Hemmat GR, Reeves RD, Baker AJM (2007) Accumulation of lead and zink by plants colonizing a metal mining area in central Iran. J Appl Bot Food Qual 81:145–150

    CAS  Google Scholar 

  • Gopal B (2003) Perspectives on wetland science, application and policy. Hydrobiologia 490:1–10

    Article  Google Scholar 

  • Hamed KA, Tantawy ME (1990) The stem anatomy of some polygonaceae and its diagnostic significance in identification. J Fac Edu 15:249–268

    Google Scholar 

  • Hamed KA, Tantawy ME (1991) The microcharacters of the petiole and blade of certain polygonaceae as an identificatory tool. Ain Shames Sci Bull 28(B):389–406

    Google Scholar 

  • Hardej M, Ozimek T (2002) The effect of sewage sludge flooding on growth and morphometric parameters of Phragmites australis (Cav.) Trin. ex Steudel. Ecol Eng 18:343–350

    Article  Google Scholar 

  • Heneidy SZ, Bidak LM (1996) Halophytes as forage source in the western Mediterranean coastal region of Egypt. Des Inst Bull 46(2):261–283

    Google Scholar 

  • Hu MJ, Wei YL, Yang YW, Lee JF (2003) Immobilization of chromium (VI) with debris of aquatic plants. Bull Environ Cont Tox 71:840

    Article  CAS  Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    Article  CAS  Google Scholar 

  • Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M (2007) Comparison of adsorption capabilities of Myriophyllum spicaum and Ceratophyllum demersum for Zn, Cu, Pb. Eng Life Sci 7:192

    Article  CAS  Google Scholar 

  • Khattab AF, El-Gharably Z (1984) The problem of aquatic weeds in Egypt and methods of management. In: Design and maintenance of open channels (1990), 3rd edn. Research Institute of Weed Control and Channel Maintenance, Water Research Center and Ministry of Public Works and Water Resources, pp 114–130

  • Knight RL (1997) Wildlife habitat and public use benefits of treatment Wetlands. Water Sci Tech 35(5):35–43

    Article  Google Scholar 

  • Larsen VJ, Schierup HH (1981) Macrophyte cycling of zinc, copper, lead and cadmium in the littoral zone of a polluted and a non-polluted lake. II. Seasonal changes in heavy metal content of aboveground biomass and decomposing leaves of Phragmites australis (Cav.) Trin. Aqua Bot 11:211–230

    Article  CAS  Google Scholar 

  • Le Houérou HN (1980) Chemical composition and nutritive value of browse in tropical West Africa. In: Houérou Le (ed) Browse in Africa. ILCA, Addis Ababa, pp 261–289

    Google Scholar 

  • Leresten NR, Curtis JD (1992) Foliar anatomy of Polygonum (Polygonaceae): survey of epidermal and selected internal structures. Plant Syst Evol 182:71–106

    Article  Google Scholar 

  • Li A, Bao B, Borodina AE, Hong SP, Neill JMc, Mosyakin SL, Ohba H, Park CW (2003) Polygonaceae. Flora China 5:277–350

    Google Scholar 

  • Long XX, Yang XE, Ni WZ, Ye ZQ, He ZL, Calvert DV, Sftoffella JP (2003) Assessing zinc thresholds for phytoxicity and potential dietary toxicity in selected vegetable crops. Com Soil Sci Plant Anat 34:1421–1434

    Article  CAS  Google Scholar 

  • Maddison M, Soosaar K, Mauring T, Mander Ü (2009) The biomass and nutrient and heavy metal content of cattails and reeds in wastewater treatment wetlands for the production of construction material in Estonia. Desalination 247:121–129

    Google Scholar 

  • Maine MA, Duarte MV, Sune NL (2001) Cadmium uptake by floating macrophytes. Water Res 35:609

    Article  Google Scholar 

  • Manios T, Stentiford EI, Millner PA (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metalliferous water. Ecol Eng 20:65–74

    Article  Google Scholar 

  • Mays PA, Edwards GS (2001) Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol Eng 16:487–500

    Article  Google Scholar 

  • Miretzky P, Saralegui A, Fernandez Cirelli A (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005

    Article  CAS  Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62:247

    Article  CAS  Google Scholar 

  • Naga MA, El-Shazly K (1971) The prediction of the nutritive value of animal feeds from chemical analysis. J Agric Sci 77:25

    Article  Google Scholar 

  • NRC (1981) Nutrient requirements of domestic animals: Nutrient requirement of goats. National Research Council No. 15, Washington, DC, National Academy of Science, p 80

  • NRC (1984) Nutrient requirements of domestic animals: nutrient requirement of beef cattle, 6th edn. National Research Council No. 5, Washington DC, National Academic Sciences, p 90

  • NRC (1985) Nutrient requirements of domestic animals: nutrient requirement of cheep, 6th edn. Research Council Pamphelets No. 5, Washington, DC, National Academic Sciences

  • Partridge JW (2001) Persicaria amphibia (L.) Gray (Polygonum amphibium L.). J Ecol 89:487–501

    Article  Google Scholar 

  • Pine RT, Anderson LWJ, Hung SSO (1989) Notes on non-destructive estimation of aquatic macrophytes biomass. J Aqua Plant Manag 27:47–49

    Google Scholar 

  • Rijal ML, Appel E, Petrovský E, Blaha U (2010) Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments. Environ Pollut 158:1756–1762

    Article  CAS  Google Scholar 

  • Salt DE, Krämer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals, using plants to clean up the environment. John Wiley & Sons, New York, pp 231–246

    Google Scholar 

  • SAS (1985) SAS/STAT user’s guide. SAS Instruction Incorporation, Cary

    Google Scholar 

  • Schneider IAH, Rubio J (1999) Sorption of heavy metal ions by the non-living biomass of freshwater macrophytes. Environ Sci Technol 33:2213

    Article  CAS  Google Scholar 

  • Sekabira K, Oryem Origa H, Basamba TA, Mutumba G, Kakudidi E (2010) Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J Environ Sci Technol 7(4):435–446

    Article  CAS  Google Scholar 

  • Serag MS, El-Hakeem A, Badway M, Mousa MA (2000) On the ecology of Azolla filiculoides Lam. in Damietta District, Egypt. Limnologia 30:73–81

    Article  Google Scholar 

  • Shaltout KH, Galal TM, El-Komy TM (2010) Evaluation of the nutrient status of some hydrophytes in the water courses of Nile Delta, Egypt. Ecol Med 36(1):77–87

    Google Scholar 

  • Shaltout KH, El-Komi TM, Eid ME (2012) Seasonal variation in the phytomass, chemical composition and nutritional value of Azolla filiculoides Lam. along the water courses in Nile Delta, Egypt. Fed Rep 123:1–13

    Article  Google Scholar 

  • Sharma SS, Gaur JP (1995) Potential of Lemna polyrrhiza for removal of heavy metals. Ecol Eng 4:37

    Article  Google Scholar 

  • Shoukry MM (1992) An actual vision about the availability of the utilization of water hyacinth in feeding ruminants. In: National Symposium on Water Hyacinth, Assiut University, pp 75–92 (In Arabic)

  • Soerjani M (1986) Environmental considerations in the novel approach of aquatic vegetation management. In: Noda K, Mercado BL (eds) Weeds and the environment in the tropics. Symposium of the 10th Conference APWSS, Thailand, pp 33–49

  • Souza A, Sandrin CZ, Calió MFA, Meirelles ST, Pivello VR, Figueiredo-Ribeiro RCL (2010) Seasonal variation of soluble carbohydrates and starch in Echinolaena inflexa, a native grass species from the Brazilian savanna, and in the invasive grass Melinis minutiflora. Br J Biol 70(2):395–404

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    Article  CAS  Google Scholar 

  • Täckholm V (1974) Student’s flora of Egypt, 2nd edn. Cairo University Press, Cairo, p 888

    Google Scholar 

  • Tantawy ME, Hamed KA, EL-Magly UI (2005) Floral morphology of some taxa of polygonaceae in Egypt. J Biotech 21:308–329

    Google Scholar 

  • UNESCO (1977) Map of the world distribution of arid regions. MAB Technical Notes, p 7

  • van Dyke JM, Sutton DL (1977) Digestion of duckweed (Lemna spp.) by the grass carp (Ctenopharyngodon idella). J Fish Biol 11:273–278

    Article  Google Scholar 

  • Vesk PA, Nockold CE, Allaway WG (1999) Metal localization in water hyacinth roots from an urban wetland. Plant Cell Environ 22:149

    Article  Google Scholar 

  • Weis JS, Glover T, Weis P (2004) Interactions of metals affect their distribution in tissues of Phragmites australis. Environ Pollut 131:409–415

    Article  CAS  Google Scholar 

  • Yan X, Zhang F, Zeng C, Zhang M, Devkota LP, Yao T (2012) Relationship between heavy metal concentrations in soils and grasses of roadside farmland in Nepal. Int J Environ Res Pub Heal 9:3209–3226

    Article  CAS  Google Scholar 

  • Zhang CB, Wang J, Liu WL, Zhu SX, Liu D, Chang SX, Chang J, Ge Y (2010) Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland. Bioresour Technol 101:1686–1692

    Google Scholar 

  • Zhang C, Qiao Q, Piper JDA, Huang B (2011) Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ Pollut 159:3057–3070

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Galal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaltout, K.H., Galal, T.M. & El-Komi, T.M. Biomass, nutrients and nutritive value of Persicaria salicifolia Willd. in the water courses of Nile Delta, Egypt. Rend. Fis. Acc. Lincei 25, 167–179 (2014). https://doi.org/10.1007/s12210-013-0269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-013-0269-6

Keywords

Navigation