Skip to main content
Log in

Selectivity modulation through immobilization of chiral catalysts on nanostructured supports

  • Chirality in Chemistry and Biophysics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Chiral catalysis has turned out to be the most efficient of the strategies to obtain enantiomerically pure compounds and, as an evidence, even nature uses chiral catalysts called enzymes. On the other hand, in the last years, numerous supported chiral catalysts have been prepared to try to reproduce the results obtained with homogeneous catalysts at the same time that they provide advantages such as recycling and stability. However, these advantages are not frequently enough to justify the use of supported catalysts. Nanostructured solids with well-controlled surfaces and pores may act as nanoreactors, hindering or even blocking some of the reaction channels and hence, modifying the different types of selectivity, including enantioselectivity. This effect is conceptually well assumed with three-dimensional supports, as chirality is normally explained in three dimensions; however, chirality is possible in any dimensional space and support effects have been also observed with two-dimensional supports. The example described here shows the use of supports to improve or even change the selectivity is an emerging interesting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Blaser H-U, Pugin B (1995) Scope and limitations of the application of heterogeneous enantioselective catalysts. In: Jannes G, Dubois V (eds) Chiral reactions in heterogeneous catalysis. Plenum Press, New York, pp 33–57

    Chapter  Google Scholar 

  • Castillo MR, Fousse L, Fraile JM, García JI, Mayoral JA (2007) Supported ionic liquid films (SILF) as bidimensional nanoreactors for enantioselective reactions: surface-mediated selectivity modulation (SMSM). Chem Eur J 13:287–291

    Article  CAS  Google Scholar 

  • Castillo MR, Fraile JM, Mayoral JA (2012) Structure and dynamic of 1-butyl-3-methylimidazolium hexafluorophosphate phases on silica and laponite: from liquid to solid behavior. Langmuir 28:11364–11375

    Article  CAS  Google Scholar 

  • Corma A, Iglesias M, del Pino C, Sánchez F (1991) New rhodium complexes anchored on modified USY zeolites. A remarkable effect of the support on the enantioselectivity of catalytic hydrogenation of prochiral alkenes. J Chem Soc Chem Commun 1253–1255

  • De Vos DE, Vankelecom IFJ, Jacobs PA (2000) Chiral catalysts immobilization and recycling. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Diddams P (1992) Inorganic supports and catalysts: an overview. In: Smith K (ed) Solid supports and catalysis in organic synthesis. Ellis Horwood-PTR Prentice Hall, New York, pp 3–39

    Google Scholar 

  • Fabra MJ, Fraile JM, Herrerías CI, Lahoz FJ, Mayoral JA, Pérez I (2008) Surface-enhanced stereoselectivity in Mukaiyama aldol reactions catalyzed by clay-supported bis(oxazoline)–copper complexes. Chem Commun 5402–5404

  • Fernández AI, Fraile JM, García JI, Herrerías CI, Mayoral JA, Salvatella L (2001) Reversal of enantioselectivity by change of solvent with clay-immobilized bis(oxazoline)–copper catalysts. Catal Commun 2:165–170

    Article  Google Scholar 

  • Fraile JM, García JI, Martínez-Merino V, Mayoral JA, Salvatella L (2001) Theoretical (DFT) insights into the mechanism of copper-catalyzed cyclopropanation reactions. Implications for enantioselective catalysis. J Am Chem Soc 123:7616–7625

    Article  CAS  Google Scholar 

  • Fraile JM, García JI, Harmer MA, Herrerías CI, Mayoral JA, Reiser O, Werner H (2002) Immobilisation of bis(oxazoline)-copper complexes on clays and nanocomposites. Influence of different parameters on activity and selectivity. J Mater Chem 12:3290–3295

    Article  CAS  Google Scholar 

  • Fraile JM, García JI, Mayoral JA, Roldán M (2007) Simple and efficient heterogeneous copper catalysts for enantioselective C–H carbene insertion. Org Lett 9:731–733

    Article  CAS  Google Scholar 

  • Fraile JM, García JI, Jiménez-Osés G, Mayoral JA, Roldán M (2008) Surface confinement effects on enantioselective cyclopropanation. Reactions with supported chiral 8-oxazolinyl quinoline-copper complexes. Organometallics 27:2246–2251

    Article  CAS  Google Scholar 

  • Fraile JM, García JI, Mayoral JA (2009) Non-covalent immobilization of enantioselective catalysts. Chem Rev 109:360–417

    Article  CAS  Google Scholar 

  • Fraile JM, García JI, Mayoral JA (2011a) Chiral catalysts. In: Zecchina A, Bordiga S, Gropp E (eds) Selective nanocatalysts and nanoscience: concepts for heterogeneous and homogeneous catalysis. Wiley-VCH, Weinheim, pp 193–235

    Chapter  Google Scholar 

  • Fraile JM, de López-Ram Viu P, Mayoral JA, Roldán J, Santafé- Valero J (2011b) Enantioselective C–H carbene insertions with heterogeneous and immobilized copper complexes. Org Biomol Chem Rev 9:6075–6081

    Article  CAS  Google Scholar 

  • García JI, Jiménez-Osés G, Martínez-Merino V, Mayoral JA, Pires E, Villalba I (2007) QM/MM modeling of enantioselective pybox-ruthenium and box-copper-catalyzed cyclopropanation reactions. Scope, performance and applications to ligand design. Chem Eur J 13:4064–4073

    Article  Google Scholar 

  • García JI, López-Sánchez B, Pires E, Villalba I (2008) Surface confinement effects in enantioselective catalysis: design of new heterogeneous chiral catalysts based on C1-symmetric bisoxazolines and application to cyclopropanation reactions. J Catal 258:378–385

    Article  Google Scholar 

  • Heitbaum M, Glorius F, Escher I (2006) Asymmetric heterogeneous catalysis. Angew Chem Int Ed 45:4732–4762

    Article  CAS  Google Scholar 

  • Jacobsen EN, Pfaltz A, Yamamoto H (1999) Comprehensive asymmetric catalysis. Springer, Berlin

    Google Scholar 

  • Johnson BFG, Raynor SA, Shephard DS, Maschmeyer T, Thomas JM, Sankar G, Bromley S, Oldroyd RD, Gladden L, Mantle MD (1999) Superior performance of a chiral catalyst confined within mesoporous silica. Chem Commun 1167–1168

  • Jones MD, Raja R, Thomas JM, Johnson BFG, Lewis DW, Rouzaud J, Harris KDM (2003) Enhancing the enantioselectivity of novel homogeneous organometallic hydrogenation catalysts. Angew Chem Int Ed 42:4326–4331

    Article  CAS  Google Scholar 

  • Macchioni A (2005) Ion pairing in transition-metal organometallic chemistry. Chem Rev 105:2039–2073

    Article  CAS  Google Scholar 

  • O’Leary P, Krosveld NP, De Jong KP, van Koten G, Gebbink RJMK (2004) Facile and rapid immobilization of copper(II) bis(oxazoline) catalysts on silica: application to Diels–Alder reactions, recycling, and unexpected effects on enantioselectivity. Tetrahedron Lett 45:3177–3180

    Article  Google Scholar 

  • Raja R, Thomas JM, Jones MD, Johnson BFG, Vaughan DEW (2003) Constraining asymmetric organometallic catalysts within mesoporous supports boosts their enantioselectivity. J Am Chem Soc 125:14982–14983

    Article  CAS  Google Scholar 

  • Thomas JM, Raja R (2008) Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Acc Chem Res 41:708–720

    Article  CAS  Google Scholar 

  • Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) High-performance nanocatalysts for single-step hydrogenations. Acc Chem Res 36:20–30

    Article  CAS  Google Scholar 

  • Wang H, Li X, Xia H, Liu P, Gao J, Ying P, Xiao J, Li C (2006) Asymmetric Diels–Alder reactions with hydrogen bonding heterogeneous catalysts and mechanistic studies on the reversal of enantioselectivity. Tetrahedron 62:1025–1032

    Article  CAS  Google Scholar 

  • Xu B, Tao C, Cullen WG, Reut-Robery JE, Williams ED (2005) Chiral symmetry breaking in two-dimensional C60-ACA intermixed systems. Nano Lett 5:2207–2211

    Article  CAS  Google Scholar 

  • Yang H, Li J, Yang J, Lin Z, Yang Q, Li C (2007a) Asymmetric reactions on chiral catalysts entrapped within a mesoporous cage. Chem Commun 1086–1088

  • Yang H, Zhang L, Zhong L, Yang Q, Li C (2007b) Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co(salen)] catalysts confined in nanocages. Angew Chem Int Ed 46:6861–6865

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministerio de Economía y Competitividad (Project CTQ2011-28124) and the Diputación General de Aragón (E11 Group co-financed by the European Regional Development Funds) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Mayoral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrerías, C.I., Mayoral, J.A. Selectivity modulation through immobilization of chiral catalysts on nanostructured supports. Rend. Fis. Acc. Lincei 24, 227–237 (2013). https://doi.org/10.1007/s12210-013-0237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-013-0237-1

Keywords

Navigation