Skip to main content
Log in

Time-resolved crystallography for protein structure: the case of heme proteins

  • XR DIFFRACTION
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Time-resolved Laue diffraction is an elegant approach by which polychromatic X-ray pulses are used in combination with rapid laser triggering of light-sensitive samples so as to make a movie of protein reaction dynamics in real time. The current state-of-the-art with protein Laue diffraction has been time-resolved studies of light-induced conformational changes in myoglobin-CO with 150 ps resolution. Myoglobin has traversed the whole history of pump–probe Laue diffraction, yielding a massive amount of data that have provided considerable insight into the understanding of protein dynamics. A picture of factors governing myoglobin dynamics following ligand dissociation has been drawn from data arising from wild-type and mutant proteins. Other heme proteins have been studied using this approach: Scapharca inequivalvis dimeric hemoglobin, the FixL PAS domain and the photosynthetic reaction center complex of Blastochloris viridis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ansari A, Jones CM, Henry ER, Hofrichter J, Eaton WA (1994) Conformational relaxation and ligand binding in myoglobin. Biochemistry 33:5128–5145

    Article  CAS  Google Scholar 

  • Bourgeois D, Royant A (2005) Advances in kinetic protein crystallography. Curr Opin Struct Biol 15(5):538–547

    Article  CAS  Google Scholar 

  • Bourgeois D, Wagner U, Wulff M (2000) Towards automated Laue data processing: application to the choice of optimal X-ray spectrum. Acta Crystallogr D Biol Crystallogr 56:973–985

    Article  CAS  Google Scholar 

  • Bourgeois D, Vallone B, Schotte F, Arcovito A, Miele AE, Sciara G, Wulff M, Anfinrud P, Brunori M (2003) Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proc Natl Acad Sci USA 100:8704–8709

    Article  CAS  Google Scholar 

  • Brunori M (2001) Nitric oxide moves myoglobin centre stage. Trends Biochem Sci 26:209–210

    Article  CAS  Google Scholar 

  • Brunori M (2010) Myoglobin strikes back. Protein Sci 19:195–201

    Article  CAS  Google Scholar 

  • Brunori M, Vallone B, Cutruzzola F, Travaglini-Allocatelli C, Berendzen J, Chu K, Sweet RM, Schlichting I (2000) The role of cavities in protein dynamics: crystal structure of a photolytic intermediate of a mutant myoglobin. Proc Natl Acad Sci USA 97:2058–2063

    Article  CAS  Google Scholar 

  • Brunori M, Bourgeois D, Vallone B (2004) The structural dynamics of myoglobin. J Struct Biol 147:223–234

    Article  CAS  Google Scholar 

  • Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109(9):4108–4139

    Article  CAS  Google Scholar 

  • Colletier JP, Royant A, Specht A, Sanson B, Nachon F, Masson P, Zaccai G, Sussman JL, Goeldner M, Silman I, Bourgeois D, Weik M (2007) Use of a ‘caged’ analogue to study the traffic of choline within acetylcholinesterase by kinetic crystallography. Acta Crystallogr D Biol Crystallogr 63:1115–1128

    Google Scholar 

  • Fischer S, Olsen KW, Nam K, Karplus M (2011) Unsuspected pathway of the allosteric transition in hemoglobin. Proc Natl Acad Sci USA 108:5608–5613

    Article  CAS  Google Scholar 

  • Frauenfelder H, McMahon BH (2001) Relaxations and fluctuations in myoglobin. Biosystems 62:3–8

    Article  CAS  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    Article  CAS  Google Scholar 

  • Frauenfelder H, McMahon BH, Fenimore PW (2003) Myoglobin: the hydrogen atom of biology and a paradigm of complexity. Proc Natl Acad Sci USA 100:8615–8617

    Article  CAS  Google Scholar 

  • Frauenfelder H, Chen G, Berendzen J, Fenimore PW, Jansson H, McMahon BH, Stroe IR, Swenson J, Young RD (2009) A unified model of protein dynamics. Proc Natl Acad Sci USA 109:5129–5134

    Article  Google Scholar 

  • Gong W, Hao B, Mansy SS, Gonzalez G, Gilles-Gonzalez MA, Chan MK (1998) Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc Natl Acad Sci USA 95:15177–15182

    Article  CAS  Google Scholar 

  • Hagen SJ, Hofrichter J, Eaton WA (1995) Protein reaction kinetics in a room-temperature glass. Science 269(5226):959–962

    Article  CAS  Google Scholar 

  • Hartmann H, Zinser S, Komninos P, Schneider RT, Nienhaus GU, Parak F (1996) X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc Natl Acad Sci USA 93:7013–7016

    Article  CAS  Google Scholar 

  • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666

    Article  CAS  Google Scholar 

  • Key J, Srajer V, Pahl R, Moffat K (2007) Time-resolved crystallographic studies of the heme domain of the oxygen sensor FixL: structural dynamics of ligand rebinding and their relation to signal transduction. Biochemistry 46:4706–4715

    Article  CAS  Google Scholar 

  • Knapp JE, Pahl R, Srajer V, Royer WE Jr (2006) Allosteric action in real time: time-resolved crystallographic studies of a cooperative dimeric hemoglobin. Proc Natl Acad Sci USA 103:7649–7654

    Article  CAS  Google Scholar 

  • Knapp JE, Pahl R, Cohen J, Nichols JC, Schulten K, Gibson QH, Srajer V, Royer WE Jr (2009) Ligand migration and cavities within Scapharca dimeric HbI: studies by time-resolved crystallo-graphy, Xe binding, and computational analysis. Structure 17:1494–1504

    Article  CAS  Google Scholar 

  • Li T, Quillin ML, Phillips GN Jr, Olson JS (1994) Structural determinants of the stretching frequency of CO bound to myoglobin. Biochemistry 33:1433–1446

    Article  CAS  Google Scholar 

  • Moffat K (2001) Time-resolved biochemical crystallography: a mechanistic perspective. Chem Rev 101:1569–1581

    Article  CAS  Google Scholar 

  • Murray LP, Hofrichter J, Henry ER, Eaton WA (1988) Time-resolved optical spectroscopy and structural dynamics following photodissociation of carbonmonoxyhemoglobin. Biophys Chem 29:63–76

    Article  CAS  Google Scholar 

  • Rajagopal S, Schmidt M, Anderson S, Ihee H, Moffat K (2004) Analysis of experimental time-resolved crystallographic data by singular value decomposition. Acta Crystallogr D Biol Crystallogr 60:860–871

    Article  Google Scholar 

  • Ren Z, Perman B, Srajer V, Teng TY, Pradervand C, Bourgeois D, Schotte F, Ursby T, Kort R, Wulff M, Moffat K (2001) Molecular movie at 1.8 A resolution displays the photocycle of photoactive yellow protein, a eubacterial blue-light receptor, from nanoseconds to seconds. Biochemistry 40:13788–13801

    Article  CAS  Google Scholar 

  • Royer WE Jr, Pardanani A, Gibson QH, Peterson ES, Friedman JM (1996) Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin. Proc Natl Acad Sci USA 93:14526–14531

    Article  CAS  Google Scholar 

  • Schlichting I, Almo SC, Rapp G, Wilson K, Petratos K, Lentfer A, Wittinghofer A, Kabsch W, Pai EF, Petsko GA, Goody RS (1990) Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345:309–315

    Google Scholar 

  • Schlichting I, Berendzen J, Phillips GN Jr, Sweet RM (1994) Crystal structure of photolysed carbonmonoxy-myoglobin. Nature 371:808–812

    Article  CAS  Google Scholar 

  • Schmidt M, Nienhaus K, Pahl R, Krasselt A, Anderson S, Parak F, Nienhaus GU, Srajer V (2005) Ligand migration pathway and protein dynamics in myoglobin: a time-resolved crystallographic study on L29W MbCO. Proc Natl Acad Sci USA 102:11704–11709

    Article  CAS  Google Scholar 

  • Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN Jr, Wulff M, Anfinrud PA (2003) Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300:1944–1947

    Article  CAS  Google Scholar 

  • Schotte F, Soman J, Olson JS, Wulff M, Anfinrud PA (2004) Picosecond time-resolved X-ray crystallography: probing protein function in real time. J Struct Biol 147:235–246

    Article  CAS  Google Scholar 

  • Scott EE, Gibson QH (1997) Ligand migration in sperm whale myoglobin. Biochemistry 36:11909–11917

    Article  CAS  Google Scholar 

  • Shima F, Ijiri Y, Muraoka S, Liao J, Ye M, Araki M, Matsumoto K, Yamamoto N, Sugimoto T, Yoshikawa Y, Kumasaka T, Yamamoto M, Tamura A, Kataoka T (2010) Structural basis for conformational dynamics of GTP-bound Ras protein. J Biol Chem 285:22696–22705

    Article  CAS  Google Scholar 

  • Srajer V, Ren Z, Teng TY, Schmidt M, Ursby T, Bourgeois D, Pradervand C, Schildkamp W, Wulff M, Moffat K (2001) Protein conformational relaxation and ligand migration in myoglobin: a nanosecond to millisecond molecular movie from time-resolved Laue X-ray diffraction. Biochemistry 40:13802–13815

    Article  CAS  Google Scholar 

  • Stamper C, Bennett B, Edwards T, Holz RC, Ringe D, Petsko G (2001) Inhibition of the aminopeptidase from Aeromonas proteolytica by l-leucinephosphonic acid. Spectroscopic and crystallographic characterization of the transition state of peptide hydrolysis. Biochemistry 40:7035–7046

    Article  CAS  Google Scholar 

  • Stoddard BL, Cohen BE, Brubaker M, Mesecar AD, Koshland DE Jr (1998) Millisecond Laue structures of an enzyme–product complex using photocaged substrate analogs. Nat Struct Biol 5:891–897

    Article  CAS  Google Scholar 

  • Tilton RF Jr, Kuntz ID Jr, Petsko GA (1984) Cavities in proteins: structure of a metmyoglobin–xenon complex solved to 1.9 A. Biochemistry 23:2849–2857

    Article  CAS  Google Scholar 

  • Travaglini Allocatelli C, Cutruzzolà F, Brancaccio A, Vallone B, Brunori M (1994) Engineering Ascaris hemoglobin oxygen affinity in sperm whale myoglobin: role of tyrosine B10. FEBS Lett 352:63–66

    Article  CAS  Google Scholar 

  • Viappiani C, Bettati S, Bruno S, Ronda L, Abbruzzetti S, Mozzarelli A, Eaton WA (2004) New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels. Proc Natl Acad Sci USA 101:14414–14419

    Article  CAS  Google Scholar 

  • Westenhoff S, Nazarenko E, Malmerberg E, Davidsson J, Katona G, Neutze R (2010) Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches. Acta Crystallogr A 66:207–219

    Article  CAS  Google Scholar 

  • Wöhri AB, Katona G, Johansson LC, Fritz E, Malmerberg E, Andersson M, Vincent J, Eklund M, Cammarata M, Wulff M, Davidsson J, Groenhof G, Neutze R (2010) Light-induced structural changes in a photosynthetic reaction center caught by Laue diffraction. Science 328:630–633

    Article  Google Scholar 

  • Wulff M, Plech A, Eybert L, Randler R, Schotte F, Anfinrud PA (2002) The realization of sub-nanosecond pump and probe experiments at the ESRF. Faraday Discuss 122:13–26

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Vallone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallone, B. Time-resolved crystallography for protein structure: the case of heme proteins. Rend. Fis. Acc. Lincei 24 (Suppl 1), 101–107 (2013). https://doi.org/10.1007/s12210-012-0200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-012-0200-6

Keywords

Navigation