Skip to main content
Log in

X-ray diffraction as a tool in the path from the design of an active pharmaceutical ingredient to the tablet on the shelf

  • X-Ray Diffraction
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Accurate knowledge of molecular structure is a prerequisite for rational drug design. X-ray diffraction has a paramount importance in providing the required structural information: the structural determination by X-ray diffraction of new drug candidates and intermediates can provide valuable information of new syntheses and parameters for quantitative structure–activity relationships. Macromolecular X-ray crystallography is an important and powerful technique used in the discovery of new medicines. The detailed analysis of crystal structures of protein–ligand complexes allows the study of the specific interactions of a particular drug with its protein target at the atomic level. Most marketed pharmaceuticals consist of molecular crystals. The arrangement of the molecules in a crystal determines its physical properties and greatly influences the processing and formulation of solid pharmaceuticals, as well as key drug properties such as dissolution rate and stability. X-ray diffraction is the main tool to characterize the drugs in solid forms. An example of the use of X-ray diffraction in the development of rifamycins is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal S, Ashokraj Y, Bharatam PV, Pillai O, Panchagnula R (2004) Solid-state characterization of rifampicin samples and its biopharmaceutic relevance. Eur J Pharm Sci 22:127–144. doi:10.1016/j.ejps.2004.02.011

    Article  CAS  Google Scholar 

  • Arora SK, Arjunan P (1992) Molecular-structure and conformation of rifamycin-S, a potent inhibitor of DNA-dependent RNA-polymerase. J Antibiot 45:428–431

    Article  CAS  Google Scholar 

  • Artsimovitch I, Vassylyeva MN, Svetlov D, Svetlov V, Perederina A, Igarashi N, Matsugaki N, Wakatsuki S, Tahirov TH, Vassylyev DG (2005) Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122:351–363. doi:10.1016/j.cell.2005.07.014

    Article  CAS  Google Scholar 

  • Babine RE, Abdel-Meguid SS (eds) (2004) Protein crystallography in drug discovery. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Bacchi A, Pelizzi G (1999) Conformational variety for the ansa chain of rifamycins: comparison of observed crystal structures and molecular dynamics simulations. J Comput Aided Mol Des 13:385–396. doi:10.1023/A:1008070316079

    Article  CAS  Google Scholar 

  • Bacchi A, Mori G, Pelizzi G, Pelosi G, Nebuloni M, Panzone GB (1995) Polymorphism-structure relationships of rifamexil, an antibiotic rifamycin derivative. Mol Pharmacol 47:611–623

    CAS  Google Scholar 

  • Bacchi A, Pelizzi G, Nebuloni M, Ferrari P (1998) Comprehensive study on structure-activity relationships of rifamycins: discussion of molecular and crystal structure and spectroscopic and thermochemical properties of rifamycin O. J Med Chem 41:2319–2332. doi:10.1021/jm970791o

    Article  CAS  Google Scholar 

  • Bacchi A, Carcelli M, Pelizzi G (2008) Sampling rifamycin conformational variety by cruising through crystal forms: implications for polymorph screening and for biological models. New J Chem 32:1725–1735. doi:10.1039/b804746d

    Article  CAS  Google Scholar 

  • Bernstein J (2002) Polymorphism in molecular crystals. Oxford University Press, Oxford

    Google Scholar 

  • Bhoem H-J, Schneider G (eds) (2003) Protein-ligand interactions: from molecular recognition to drug design. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Brufani M, Cerrini S, Fedeli W, Vaciago A (1974) Rifamycins: an insight into biological activity based on structural investigations. J Mol Biol 87:409–435. doi:10.1016/0022-2836(74)90094-1

    Article  CAS  Google Scholar 

  • Brufani M, Cellai L, Cerrini S, Fedeli W, Segre A, Vaciago A (1982) Structure-activity relationships in the ansamycins: molecular structure and activity of 3-carbomethoxy rifamycin S. Mol Pharmacol 21:394–399

    CAS  Google Scholar 

  • Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912. doi:10.1016/S0092-8674(01)00286-0

    Article  CAS  Google Scholar 

  • Crowfoot D, Bunn CW, Rogers-Low BW, Turner-Jones A (1949) The Chemistry of Penicillin. 310

  • Ferry G (2000) Dorothy hodgkin: a life. Cold Spring Harbor Laboratory Press, New York

  • Floss HG, Yu T-W (2005) Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev 105:621–632. doi:10.1021/cr030112j

    Article  CAS  Google Scholar 

  • Fox R (2006) The history of science, medicine and technology at Oxford. Notes Rec R Soc 60:69–83

    Article  Google Scholar 

  • Henwood SQ, Liebenberg W, Tiedt LR, Lotter AP, De Villiers MM (2001) Characterization of the solubility and dissolution properties of several new rifampicin polymorphs, solvates, and hydrates. Drug Dev Ind Pharm 27:1017–1030. doi:10.1081/DDC-100108364

    Article  CAS  Google Scholar 

  • Hilfiker R (ed) (2006) Polymorphism in the pharmaceutical industry. Wiley-VCH, Weinheim

    Google Scholar 

  • Lancini G, Zanichelli W (1977) Structure-activity relationships in rifamycins. In: Perlman D (ed) Structure-activity relationships among the semisynthetic antibiotics. Academic Press, London

    Google Scholar 

  • Macheboeuf P, Di Guilmi AM, Job V, Vernet T, Dideberg O, Dessen A (2005) Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. Proc Natl Acad Sci USA 102:577–582

    Article  CAS  Google Scholar 

  • Maggi N, Pallanza R, Sensi P (1965) New derivatives of rifamycin SV. Antimicrob Agents Chemother 5:765–769

    CAS  Google Scholar 

  • Majewski M, McCallum RW (2007) Efficacy of rifaximin, a nonabsorbed oral antibiotic, in the treatment of small intestinal bacterial overgrowth. Am J Med Sci 333:266–270. doi:10.1097/MAJ.0b013e3180536784

    Article  Google Scholar 

  • Ng R (2008) Drugs: from discovery to approval. Wiley-Blackwell, London

    Book  Google Scholar 

  • Sensi P, Margalith P, Timbal MT (1959) Rifamycin, a new antibiotic; preliminary report. Farmaco Sci 14:146–147

    CAS  Google Scholar 

  • Viscomi GC, Campana M, Confortini D, Barbanti MM, Braga D (2006) Eur Pat Appl. (EP 2005-4695 20050303)

  • Viscomi GC, Campana M, Barbanti M, Grepioni F, Polito M, Confortini D, Rosini G, Righi P, Cannata V, Braga D (2008) Crystal forms of rifaximin and their effect on pharmaceutical properties. CrystEngComm 10:1074–1081. doi:10.1039/b717887e

    Article  CAS  Google Scholar 

  • Wouters J, Ooms F (2001) Small molecule crystallography in drug design. Curr Pharm Des 7:529–545. doi:10.2174/1381612013397889

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Bacchi.

Additional information

This contribution is the written, peer-reviewed version of a paper presented at the conference “The Centennial of X-Ray Diffraction (1912–2012)”, held at Accademia Nazionale dei Lincei in Rome on May 8 and 9, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacchi, A. X-ray diffraction as a tool in the path from the design of an active pharmaceutical ingredient to the tablet on the shelf. Rend. Fis. Acc. Lincei 24 (Suppl 1), 109–114 (2013). https://doi.org/10.1007/s12210-012-0199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-012-0199-8

Keywords

Navigation