Skip to main content

Advanced X-Ray Analytical Methods to Understand Structure, Properties, and Risk

  • Chapter
  • First Online:
Discovering and Developing Molecules with Optimal Drug-Like Properties

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 15))

Abstract

State-of-the-art high-energy x-ray diffraction measurements are described aimed at extracting detailed structural information on drug formulations at the atomic level. Methods for screening the glass forming ability of drug–polymer mixtures under containerless conditions, constructing phase diagrams, and extracting bonding interactions between the drug and polymer molecules are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MP, Tildesley DJ (1993) Computer simulation of liquids. Oxford University Press, Oxford. ISBN 0-19-855645-4

    Google Scholar 

  • Atassi F, Mao C, Masadeh AS, Byrn SR (2010) Solid State characterization of amorphous and mesoamorphous calcium ketoprofen. J Pharm Sci 99(9):3684

    PubMed  CAS  Google Scholar 

  • Atassi F, Behme RJ, Patel PJ (2013) Mesomorphous versus traces of crystallinity: the itraconazole example. Thermochim Acta 574:133

    Article  CAS  Google Scholar 

  • Baird JA, Van Eerdenbrugh B, Taylor LS (2010) A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 99:3787

    Article  PubMed  CAS  Google Scholar 

  • Baird JA, Santiago-Quinonez D, Rinaldi C, Taylor LS (2012) Role of viscosity in influencing the glass forming ability of organic molecules from the undercooled melt state. Pharm Res 29:271

    Article  PubMed  CAS  Google Scholar 

  • Benmore CJ (2012) A review of high-energy X-ray diffraction from glasses and liquids. ISRN Materials Science, Vol. 852905. http://dx.doi.org/10.5402/2012/852905

    Google Scholar 

  • Benmore CJ, Weber JKR (2011) Amorphization of molecular liquids of pharmaceutical drugs by acoustic levitation. Phys Rev X 1:011004

    Google Scholar 

  • Benmore CJ, Weber JKR, Tailor AN, Cherry B, Yarger JL, Mou Q, Weber W, Neuefeind J, Byrn SR (2013) Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation. J Pharm Sci 102:1290

    Article  PubMed  CAS  Google Scholar 

  • Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60:1281–1301

    Article  PubMed  CAS  Google Scholar 

  • Elliott SR (1991) Medium range structural order in covalent amorphous solids. Nature 354:445

    Article  CAS  Google Scholar 

  • Faber TE, Ziman JM (1965) A theory of the electrical properties of liquid metals. III. The resistivity of binary alloys. Philos Mag 11:153. doi:10.1080/14786436508211931

    Article  CAS  Google Scholar 

  • Gao P (2008) Amorphous pharmaceutical solids: characterization, stabilization, and development of marketable formulations of poorly soluble drugs with improved oral absorption. Mol Pharm 5:903

    Article  PubMed  CAS  Google Scholar 

  • Hancock BC, Zografi G (1993) The use of solution theories for predicting water vapor absorption by amorphous pharmaceutical solids: a test of the Flory–Huggins and Vrentas models. Pharm Res 10(9):1262

    Article  PubMed  CAS  Google Scholar 

  • Keen DA (2001) A comparison of various commonly used correlation functions for describing total scattering. J Appl Cryst 34:172

    Article  CAS  Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edn. Wiley Interscience Publication, New York. ISBN 0471493694, 9780471493693

    Google Scholar 

  • Lorch E (1969) Neutron diffraction by germania, silica and radiation-damaged silica glasses. J Phys C 2(2):229

    Article  Google Scholar 

  • Mou Q, Benmore CJ, Yarger JL (Submitted to J. Appl. Cryst.)

    Google Scholar 

  • Mura P, Faucci MT, Manderioli A, Furlanetto S, Pinzauti S (1998) Thermal analysis as a screening technique in preformulation studies of picotamide solid dosage forms. Drug Dev Ind Pharm 24(8):747–756

    Article  PubMed  CAS  Google Scholar 

  • Neuefeind J, Benmore CJ (2009) Formalism for the determination of structural isotope effects with neutrons. Nucl Instrum Meth A 600(1):257

    Article  CAS  Google Scholar 

  • Neuefeind J, Zeidler MD, Poulsen HF (1996) The atomic and electronic structure of liquid N-methylformamide as determined from diffraction experiments. Mol Phys 87(1):189

    Article  CAS  Google Scholar 

  • Pham TN, Watson SA, Edwards AJ, Chavda M, Clawson JS, Strohmeier M, Vogt FG (2010) Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T1 relaxation measurements. Mol Pharm 7(5):1667–1691

    Article  PubMed  CAS  Google Scholar 

  • Six K, Verreck G, Peeters J, Binnemans K, Berghmans H, Augustijns P, Kinget R, Van den Mooter G (2001) Investigation of thermal properties of glassy itraconazole: identification of a monotropic mesophase. Thermochim Acta 376:175

    Article  CAS  Google Scholar 

  • Soper AK (2005) Partial structure factors from disordered materials diffraction data: an approach using empirical potential structure refinement. Phys Rev B 72(10):1

    Article  Google Scholar 

  • Soper AK (2007) Joint structure refinement of X-ray and neutron diffraction data on disordered materials: application to liquid water. J Phys Condens Matter 19(33):335206

    Article  PubMed  CAS  Google Scholar 

  • Tarnacka M, Adrjanowicz K, Kaminski E, Grzybowska K, Kolodziejczyk K, Wlodarczyk P, Hawelek L, Garbacz G, Kocot A, Paluch M (2013) Molecular dynamics of itraconazole at ambient and high pressure. Phys Chem Chem Phys 15:20742

    Article  PubMed  CAS  Google Scholar 

  • Tse JS, Klug DD, Guthrie M, Tulk CA, Benmore CJ, Urquidi J (2005) Investigation of the intermediate- and high-density forms of amorphous ice by molecular dynamics calculations and diffraction experiments. Phys Rev B 71:214107

    Article  Google Scholar 

  • Warren BE (1934) The diffraction of X-rays in glass. Phys Rev 45(10):657

    Article  CAS  Google Scholar 

  • Warren BE (1990) X-ray diffraction. Courier Dover Publications, New York. ISBN 0486663175, 9780486663173

    Google Scholar 

  • Weber JKR, Rey CA, Neuefeind J, Benmore CJ (2009) Acoustic levitator for structure measurements on low temperature liquid droplets. Rev Sci Instrum 80:083904

    Article  PubMed  CAS  Google Scholar 

  • Weber JKR, Benmore CJ, Tumber SK, Tailor AN, Rey CA, Taylor LS, Byrn SR (2012) Acoustic levitation—recent developments and emerging opportunities in biomaterials research. Eur Biophys J 41:397

    Article  PubMed  Google Scholar 

  • Wegiel LA (2013) Stability of amorphous drug polymer dispersions, impact of molecular drug polymer interactions. Ph. D. Thesis, Purdue University, 89(125): 128

    Google Scholar 

  • Whymark RR (1975) Acoustic field positioning for containerless processing. Ultrasonics 13(6):251

    Article  CAS  Google Scholar 

  • Willart JF, Descamps M (2008) Solid state amorphization of pharmaceuticals. Mol Pharm 5:905

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Stephen Byrn is thanked for helpful discussions and review of the manuscript. Dr. Rick Weber is thanked for his help with the levitator experiments and stimulating discussions throughout this project. Dr. Xin Chen is helped with the sample preparation and levitation experiments at the APS. Thanks to Veronika Kondev for Fig. 9.4c and Qiushi Mou for his help in separating out the intramolecular and intermolecular contributions for itraconazole (Fig. 9.6). This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, at the Advanced Photon Source, Argonne National Laboratory under contract number DE-AC02-06CH1135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Benmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Benmore, C.J. (2015). Advanced X-Ray Analytical Methods to Understand Structure, Properties, and Risk. In: Templeton, A., Byrn, S., Haskell, R., Prisinzano, T. (eds) Discovering and Developing Molecules with Optimal Drug-Like Properties. AAPS Advances in the Pharmaceutical Sciences Series, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1399-2_9

Download citation

Publish with us

Policies and ethics