Skip to main content
Log in

Time-resolved structure investigation with small angle X-ray scattering using scanning techniques

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Due to the availability of high-brilliance X-rays at synchrotron radiation facilities, small angle X-ray scattering (SAXS) measurements have become feasible for new sample environments, like microfluidics or aerosol systems. The combination of continuous flow methods and SAXS with spatial scanning enables in situ measurements of time-resolved structures at the nanoscale important for reactions kinetics and material synthesis and processing. In this review we present the latest achievements in terms of scanning SAXS along continuous flow mixing devices reducing the limit of time resolution at the microsecond range. This led to the determination of early stages of biological reactions like protein folding, and to gain insight into chemical reaction kinetics like nanoparticles formation. We also describe the coupling of scanning SAXS with aerosol generators, which is the only way to study the mechanisms for the self-assembly and aggregation of nanomaterials via the aerosol route. We finally give a brief outlook, as the potentiality of these techniques has not been fully exploited, leaving the possibility for further improvements in time resolution and sample consumption, for example with the new X-ray sources like Free Electron Lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akiyama S, Takahashi S, Kimura T, Ishimori K, Morishima I, Nishikawa Y, Fujisawa T (2002) Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle X-ray scattering. PNAS 99:1329–1334

    Article  CAS  Google Scholar 

  • Arai M, Kondrashkina E, Kayatekin C, Matthews CR, Iwakura M, Bilsel O (2007) Microsecond hydrophobic collapse in the folding of escherichia coli dihydrofolate reductase, an alpha/beta-type protein. J Mol Biol 368:219–229

    Article  CAS  Google Scholar 

  • Bahadur J, Sen D, Mazumder S, Paul B, Sharma IG (2010) Synthesis of porous silica grains using PEG as template via evaporation driven self assembly. AIP Conf Proc 1313:146–148

    Article  CAS  Google Scholar 

  • Beaucage G, Kammler HK, Mueller R, Strobel R, Agashe N, Pratsinis SE, Narayanan T (2004a) Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation. Nat Mater 3:370–374

    Article  CAS  Google Scholar 

  • Beaucage G, Kammler HK, Pratsinis SE (2004b) Particle size distributions from small-angle scattering using global scattering functions. J Appl Crystallogr 37:523–535

    Article  CAS  Google Scholar 

  • Beaucage G, Schaefer DW (1994) Structural studies of complex systems using small-angle scattering: a unified Guinier/power-law approach. J Non-Cryst Solids 172–174(2):797–805

    Google Scholar 

  • Bergmann A, Fritz G, Glatter O (2000) Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Crystallogr 33:1212–1216

    Article  CAS  Google Scholar 

  • Boissiere C, Grosso D, Amenitsch H, Gibaud A, Coup A, Baccile N, Sanchez C (2003) First in situ SAXS studies of the mesostructuration of spherical silica and titania particles during spray-drying process. Chem Commun 9:2798–2799

    Article  Google Scholar 

  • Boissiere C, Grosso D, Chaumonnot A, Nicole L, Sanchez C (2011) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater 23:599–623

    Article  CAS  Google Scholar 

  • Bolze J, Peng B, Dingenouts N, Panine P, Narayanan T, Ballauff M (2002) Formation and growth of amorphous colloidal CaCO3 precursor particles as detected by time-resolved SAXS. Langmuir 18:8364–8369

    Article  CAS  Google Scholar 

  • Bolze J, Pontoni D, Ballauff M, Narayanan T, Colfen H (2004) Time-resolved SAXS study of the effect of a double hydrophilic block-copolymer on the formation of CaCO3 from a supersaturated salt solution. J Coll Int Sci 277:84–94

    Article  CAS  Google Scholar 

  • Brennich ME, Nolting JF, Dammann C, Noeding B, Bauch S, Herrmann H, Pfohl T, Koester S (2011) Dynamics of intermediate filament assembly followed in micro-flow by small angle X-ray scattering. Lab Chip Miniaturisation Chem Biol 11:708–716

    Article  CAS  Google Scholar 

  • Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585

    Article  CAS  Google Scholar 

  • Camenzind A, Schulz H, Teleki A, Beaucage G, Narayanan T, Pratsinis SE (2008) Nanostructure evolution: from aggregated to spherical SiO2 particles made in diffusion flames. Eur J Inorg Chem 2008:911–918

  • Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Hunter MS, Schulz J, DePonte DP, Weierstall U, Doak RB, Maia FRNC, Martin AV, Schlichting I, Lomb L, Coppola N, Shoeman RL, Epp SW, Hartmann R, Rolles D, Rudenko A, Foucar L, Kimmel N, Weidenspointner G, Holl P, Liang M, Barthelmess M, Caleman C, Boutet S, Bogan MJ, Krzywinski J, Bostedt C, Bajt S, Gumprecht L, Rudek B, Erk B, Schmidt C, Âmke AH, Reich C, Pietschner D, StrÂder L, Hauser G, Gorke H, Ullrich J, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel KU, Messerschmidt M, Bozek JD, Hau-Riege SP, Frank M, Hampton CY, Sierra RG, Starodub D, Williams GJ, Hajdu J, Timneanu N, Seibert MM, Andreasson J, Rocker A, Jonsson O, Svenda M, Stern S, Nass K, Andritschke R, Schroter CD, Krasniqi F, Bott M, Schmidt KE, Wang X, Grotjohann I, Holton JM, Barends TRM, Neutze R, Marchesini S, Fromme R, Schorb S, Rupp D, Adolph M, Gorkhover T, Andersson I, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Spence JCH (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–78

    Google Scholar 

  • DePonte DP, Nass K, Stellato F, Liang M, Chapman HN (2011) Sample injection for pulsed x-ray sources. 8078

  • Feigin LA, Svergun D (1987) Structure analysis by small X-ray angle scattering and neutron scattering. Plenum Press, London New York

    Google Scholar 

  • Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346

    Article  CAS  Google Scholar 

  • Gardner C, Greaves GN, Hargrave GK, Jarvis S, Wildman P, Meneau F, Bras W, Thomas G (2005) In situ measurements of soot formation in simple flames using small angle X-ray scattering. Nucl Instrum Methods Phys Res B 238:334–339

    Article  CAS  Google Scholar 

  • Haberkorn H, Franke D, Frechen T, Goesele W, Rieger J (2003) Early stages of particle formation in precipitation reactions—quinacridone and boehmite as generic examples. J Coll Int Sci 259:112–126

    Article  CAS  Google Scholar 

  • Hartridge H, Roughton FJW (1923) Method of measuring the velocity of very rapid chemical reactions. Proc R Soc Lond A 104:376–394

    Article  CAS  Google Scholar 

  • Hessler JP, Seifert S, Winans RE, Fletcher TH (2001) Small-angle X-ray studies of soot inception and growth. Faraday Disc 395–407

  • Jossen R, Heine MC, Beaucage G, Narayanan T, Pratsinis SE (2006) Nano-ZrO2 growth dynamics in flames spray by small angle X-ray scattering

  • Jungnikl K, Rappolt M, Shyjumon I, Sartori B, Laggner P, Amenitsch H (2011) Aerosol flow reactor with controlled temperature gradient for in situ gas-phase X-ray experiments-measurements of evaporation-induced self-assembly (EISA) in aerosols. Aerosol Sci Technol 45:805–810

    Article  CAS  Google Scholar 

  • Kathuria SV, Guo L, Graceffa R, Barrea R, Nobrega RP, Matthews CR, Irving TC, Bilsel O (2011) Minireview: structural insights into early folding events using continuous-flow time-resolved small-angle X-ray scattering. Biopolymers 95:550–558

    Article  CAS  Google Scholar 

  • Kim WY, Sorensen CA, Fry D, Chakrabarti A (2006) Soot aggregates, superaggregates and gel-like networks in laminar diffusion flames. J Aerosol Sci 37:386–401

    Article  CAS  Google Scholar 

  • Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Phys Rev Lett 80:3863–3866

    Article  CAS  Google Scholar 

  • Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Crystallogr 39:277–286

    Article  CAS  Google Scholar 

  • Leng J, Salmon JB (2009) Microfluidic crystallization. Lab Chip Miniaturisation Chem Biol 9:24–34

    Article  CAS  Google Scholar 

  • Marmiroli B, Grenci G, Cacho-Nerin F, Sartori B, Ferrari E, Laggner P, Businaro L, Amenitsch H (2009) Free jet micromixer to study fast chemical reactions by small angle X-ray scattering. Lab on a Chip 9:2063–2069

    Article  CAS  Google Scholar 

  • Marmiroli B, Grenci G, Cacho-Nerin F, Sartori B, Laggner P, Businaro L, Amenitsch H (2010) Experimental set-up for time resolved small angle X-ray scattering studies of nanoparticles formation using a free-jet micromixer. Nucl Instr Methods Phy Res B Beam Inter Mater Atoms 268:329–333

    Article  CAS  Google Scholar 

  • Martel A, Burghammer M, Davies RJ, Di Cola E, Vendrely C, Riekel C (2008) Silk fiber assembly studied by synchrotron radiation SAXS/WAXS and raman spectroscopy. J Am Chem Soc 130:17070–17074

    Article  CAS  Google Scholar 

  • Martin HP, Brooks NJ, Seddon JM, Terrill NJ, Luckham PF, Kowalski AJ, Cabral JT (2010) Complex fluids under microflow probed by SAXS: rapid microfabrication and analysis. J Phys Conf Ser 247

  • Merlin A, Angly J, Daubersies L, Madeira C, Schoeder S, Leng J, Salmon JB (2011) Time-resolved microfocused small-angle X-ray scattering investigation of the microfluidic concentration of charged nanoparticles. Eur Phys J E 34. doi:10.1140/epje/i2011-11058-y

  • Otten A, Koster S, Struth B, Snigirev A, Pfohl T (2005) Microfluidics of soft matter investigated by small-angle X-ray scattering. J Synchr Rad 12:745–750

    Article  CAS  Google Scholar 

  • Panine P, Finet S, Weiss TM, Narayanan T (2006) Probing fast kinetics in complex fluids by combined rapid mixing and small-angle X-ray scattering. Adv Coll Interf Sci 127:9–18

    Article  CAS  Google Scholar 

  • Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Coll Interf Sci 70:171–210

    Article  CAS  Google Scholar 

  • Pfohl T, Otten A, ster S, Dootz R, Struth B, Evans HM (2007) Highly packed and oriented DNA mesophases identified using in situ microfluidic x-ray microdiffraction. Biomacromolecules 8:2167–2172

    Article  CAS  Google Scholar 

  • Pollack L, Tate MW, Darnton NC, Knight JB, Gruner SM, Eaton WA, Austin RH (1999) Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. In: Proceedings of the national academy of sciences of the United States of America, vol 96, pp 10115–10117

  • Pollack L, Tate MW, Finnefrock AC, Kalidas C, Trotter S, Darnton NC, Lurio L, Austin RH, Batt CA, Gruner SM, Mochrie SGJ (2001) Time resolved collapse of a folding protein observed with small angle X-ray scattering. Phys Rev Lett 86:4962

    Article  CAS  Google Scholar 

  • Polte J, Erler R, Thunemann AF, Sokolov S, Ahner TT, Rademann K, Emmerling F, Kraehnert R (2010) Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. Acs Nano 4:1076–1082

    Article  CAS  Google Scholar 

  • Russell R, Millett IS, Doniach S, Herschlag D (2000) Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nat Struct Biol 7:367–370

    Article  CAS  Google Scholar 

  • Russell R, Millettt IS, Tate MW, Kwok LW, Nakatani B, Gruner SM, Mochrie SGJ, Pande V, Doniach S, Herschlag D, Pollack L (2002) Rapid compaction during RNA folding. In: Proceedings of the national academy of sciences of the United States of America, vol 99, pp 4266–4271

  • Schmid F, Sommer G, Rappolt M, Schulze-Bauer CAJ, Regitnig P, Holzapfel GA, Laggner P, Amenitsch H (2005) In situ tensile testing of human aortas by time-resolved small-angle X-ray scattering. J Synchr Rad 12:727–733

    Article  CAS  Google Scholar 

  • Schmidt W, Bussian P, Linden M, Amenitsch H, Agren P, Tiemann M, Schuth F (2010) Accessing ultrashort reaction times in particle formation with SAXS experiments: ZnS precipitation on the microsecond time scale. J Am Chem Soc 132:6822–6826

    Article  CAS  Google Scholar 

  • Seibert MM, Ekeberg T, Maia FRNC, Svenda M, Andreasson J, Jonsson O, Odic D, Iwan B, Rocker A, Westphal D, Hantke M, DePonte DP, Barty A, Schulz J, Gumprecht L, Coppola N, Aquila A, Liang M, White TA, Martin A, Caleman C, Stern S, Abergel C, Seltzer V, Claverie JM, Bostedt C, Bozek JD, Boutet S, Miahnahri AA, Messerschmidt M, Krzywinski J, Williams G, Hodgson KO, Bogan MJ, Hampton CY, Sierra RG, Starodub D, Andersson I, Bajt S, Barthelmess M, Spence JCH, Fromme P, Weierstall U, Kirian R, Hunter M, Doak RB, Marchesini S, Hau-Riege SP, Frank M, Shoeman RL, Lomb L, Epp SW, Hartmann R, Rolles D, Rudenko A, Schmidt C, Foucar L, Kimmel N, Holl P, Rudek B, Erk B, Homke A, Reich C, Pietschner D, Weidenspointner G, Stroder L, Hauser G, Gorke H, Ullrich J, Schlichting I, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel KU, Andritschke R, Schroter CD, Krasniqi F, Bott M, Schorb S, Rupp D, Adolph M, Gorkhover T, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Chapman HN, Hajdu J (2011) Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470:78–82

    Google Scholar 

  • Sen D, Melo JS, Bahadur J, Mazumder S, Bhattacharya S, D’Souza SF (2010) Morphological deformation during evaporation induced assembly of mixed colloidal suspension. 1313:97–99

  • Sen D, Spalla O, Tache O, Haltebourg P, Thill A (2007) Slow drying of a spray of nanoparticles dispersion. In situ SAXS investigation. Langmuir 23:4296–4302

    Article  CAS  Google Scholar 

  • Shyjumon I, Rappolt M, Sartori B, Amenitsch H, Laggner P (2008) Novel in situ setup to study the formation of nanoparticles in the gas phase by small angle x-ray scattering. Rev Sci Instr 79

  • Shyjumon I, Rappolt M, Sartori B, Cacho-Nerin F, Grenci G, Laggner P, Amenitsch H (2011) Mesostructured silica aerosol particles: comparison of gas-phase and powder deposit X-ray diffraction data. Langmuir 27:5542–5548

    Article  CAS  Google Scholar 

  • Sorensen CM, Kim W, Fry D, Shi D, Chakrabarti A (2003) Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames. Langmuir 19:7560–7563

    Article  CAS  Google Scholar 

  • Spalla O, Lyonnard S, Testard F (2003) Analysis of the small-angle intensity scattered by a porous and granular medium. J Appl Crystallogr 36:338–347

    Article  CAS  Google Scholar 

  • Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108

    Article  CAS  Google Scholar 

  • Sztucki M, Narayanana T, Beaucage G (2007) In situ study of aggregation of soot particles in an acetylene flame by small-angle X-ray scattering. J Appl Phys 101

  • Uzawa T, Kimura T, Ishimori K, Morishima I, Matsui T, Ikeda-Saito M, Takahashi S, Akiyama S, Fujisawa T (2006) Time-resolved small-angle X-ray scattering investigation of the folding dynamics of heme oxygenase: Implication of the scaling relationship for the submillisecond intermediates of protein folding. J Mol Biol 357:997–1008

    Article  CAS  Google Scholar 

  • Wu Y, Kondrashkina E, Kayatekin C, Matthews CR, Bilsel O (2008) Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein. In: Proceedings of the national academy of sciences of the United States of America, vol 105, pp 13367–13372

Download references

Acknowledgments

B. Sartori is acknowledged for the help in preparation of some figures. The authors want to thank W. Schmidt for fruitful discussions and the layout of the left side of Fig. 2. In particular the authors thank the small angle scattering group from the Austrian SAXS beamline, which contributed to parts of this work, namely: F. Cacho-Nerin, K. Jungnikl, I. Shyjumon, F. Schmid, D. Jozic, C. Morello, M. Rappolt, S. Bernstorff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Amenitsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amenitsch, H., Marmiroli, B. Time-resolved structure investigation with small angle X-ray scattering using scanning techniques. Rend. Fis. Acc. Lincei 22 (Suppl 1), 93–107 (2011). https://doi.org/10.1007/s12210-011-0153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-011-0153-1

Keywords

Navigation