Skip to main content
Log in

Multicopper oxidases: an innovative approach for oxygen management of aerobic organisms

  • Review
  • Published:
RENDICONTI LINCEI Aims and scope Submit manuscript

Abstract

Multicopper oxidases (MCOs), such as ascorbic acid oxidase and ceruloplasmin, are multidomain proteins capable of oxidizing many structurally unrelated compounds reducing oxygen to water without ever generating reactive oxygen species. While MCOs show great oxidative versatility, they can only transfer electrons to molecular oxygen, which is the obligate electron acceptor. Therefore, MCOs could also be considered as “O2 consuming enzymes”, thus contributing to create those states of hypoxia that are normally found in tissues, cells and cell compartments. Since hypoxia is also a common feature of many rapidly growing solid tumors, we postulate that the regulation of GPI-ceruloplasmin isoform, present on the surface of the plasma membrane, could be the molecular event in the creation and the maintenance of hypoxia in tumor cells. By silencing the different MCO genes with siRNA, it would appear possible to attempt to overcome tumor hypoxia, thus improving the efficiency of radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arrigoni O, Chinni E, Ciraci S, De Tullio MC (2003) In vivo elicitation of ascorbate oxidase activity and its possible role in photosynthesizing leaves. Rendiconti Accademia dei Lincei Scienze Fisiche e Naturali 9:127–134

    Google Scholar 

  • Asikainen TM, White CW (2005) Antioxidant defenses in the preterm lung: role for hypoxia-inducible factors in BPD? Toxicol Appl Pharmacol 203:177–188

    Article  CAS  Google Scholar 

  • Bento I, Peixoto C, Zaitsev VN, Lindley PF (2007) Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites. Acta Crystallogr Sect D Biol Crystallogr 63:240–248

    Article  CAS  Google Scholar 

  • Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildman RA (2003) Phanerozoic atmospheric oxygen. Annu Rev Earth Planet Sci 31:105–134

    Article  CAS  Google Scholar 

  • Bielli P, Calabrese L (2002) Structure to function relationships in ceruloplasmin: a “moonlighting” protein. Cell Mol Life Sci 59:1413–1427

    Article  CAS  Google Scholar 

  • Bourhis J (2006) Hypoxia response pathways and radiotherapy for head and neck cancer. J Clin Oncol 24:725–726

    Article  Google Scholar 

  • Brahimi-Horn MC, Chiche J, Pouyssègur J (2007) Hypoxia and cancer. J Mol Med 85:1301–1307

    Article  Google Scholar 

  • Braun RD, Beatty AL (2006) Modeling of oxygen transport across tumor multicellular layers. Microvasc Res 73:113–123

    Article  CAS  Google Scholar 

  • Buchler P, Reber HA, Lavey RS, Tomlinson J, Buchler MW, Friess H, Hines OJ (2004) Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in orthotopic murine model. J Surg Res 120:295–303

    Article  CAS  Google Scholar 

  • Bui T, Thompson CB (2006) Cancer’s sweet tooth. Cancer Cell 9:419–420

    Article  CAS  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen. Annu Rev Earth Planet Sci 33:1–36

    Article  CAS  Google Scholar 

  • Cerveza PJ, Mehrbod F, Cotton SJ, Lomeli N, Linder MC, Fonda EG, Wickler SJ (2000) Milk ceruloplasmin and its expression by mammary gland and liver in pigs. Arch Biochem Biophys 373:451–461

    Article  CAS  Google Scholar 

  • Danzeisen R, Ponnambalam S, Lea RG, Page K, Gambling L, McArdle HJ (2000) The effect of ceruloplasmin on iron release from placental (BeWo) cells; evidence for an endogenous Cu oxidase. Placenta 21:805–812

    Article  CAS  Google Scholar 

  • De Cabo RC, Gonzalez-Reyes JA, Navas P (1993) The onset of cell proliferation is stimulated by ascorbate free radical in onion root primordia. Biol Cell 77:231–233

    Article  Google Scholar 

  • De Tullio MC, Liso R, Arrigoni O (2004) Ascorbic acid oxidase: an enzyme in search of a role. Biol Plant 48:161–166

    Article  Google Scholar 

  • De Tullio MC, Ciraci S, Liso R, Arrigoni O (2007) Ascorbic acid oxidase is dinamically regulated by lights and oxygen. A tool for oxygen management in plants? J Plant Physiol 164:39–46

    Article  CAS  Google Scholar 

  • Fleming RE, Whitman IP, Gitlin JD (1991) Induction of ceruloplasmin gene expression in rat lung during inflammation and hyperoxia. Am J Physiol 260:68–74

    Google Scholar 

  • Floris G, Medda R, Padiglia A, Musci G (2000) The physiopathological significance of ceruloplasmin. A possible therapeutic approach. Biochem Pharmacol 60:1735–1741

    Article  CAS  Google Scholar 

  • Fortna RR, Watson HA, Nyquist SE (1999) Glycosyl phosphatidylinositol-anchored ceruloplasmin is expressed by rat Sertoli cells and is concentrated in detergent-insoluble membrane fractions. Biol Reprod 61:1042–1049

    Article  CAS  Google Scholar 

  • Fukumura D, Jain RK (2006) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949

    Article  CAS  Google Scholar 

  • Ganz T (2005) Cellular iron: ferroportin is the only way out. Cell Metab 1:155–157

    Article  CAS  Google Scholar 

  • Gnaiger E, Mendez G, Hand SC (2000) High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci USA 97:11080–11085

    Article  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  CAS  Google Scholar 

  • Gwak GY, Yoon JH, Kim KM, Lee HS, Chung JW, Gores GJ (2005) Hypoxia stimulates proliferation of human hepatome cells through the induction of hexokinase II expression. J Hepatol 42:358–364

    Article  CAS  Google Scholar 

  • Gyulikhandanova NE, Tsymbalenko NV, Platonova NA, Babich VS, Puchkova LV (2004) Regulation of ceruloplasmin gene in mammals. Bull Exp Biol Med 137:485–489

    Article  CAS  Google Scholar 

  • Harris ED (1999) Ceruloplasmin and iron: vindication after 30 years. Nutrition 15:72–73

    Article  CAS  Google Scholar 

  • Healy J, Tipton K (2007) Ceruloplasmin and what it might do. J Neural Trasnm 114:777–781

    Article  CAS  Google Scholar 

  • Hidalgo A, Garcia-Herdugo G, Gonzales-Reyes JA, Morrè DJ, Navas P (1991) Ascorbate free radical stimulates onion root growth by increasing cell elongation. Bot Gazette 152:282–288

    Article  CAS  Google Scholar 

  • Hochstrasser H, Tomiuk J, Walter U, Behnke S, Spiegel J, Kruger R, Becker G, Riess O, Berg D (2005) Functional relevance of ceruloplasmin mutations in Parkinson’s disease. FASEB J 19:1851–1853

    CAS  Google Scholar 

  • Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276

    Article  CAS  Google Scholar 

  • Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    Article  CAS  Google Scholar 

  • Hoopes JT, Dean JF (2004) Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem 42:27–33

    Article  CAS  Google Scholar 

  • James JL, Stone PR, Chamley LW (2005) The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy. Hum Reprod Update 12:137–144

    Article  CAS  Google Scholar 

  • Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148

    Article  CAS  Google Scholar 

  • Kato N, Esaka M (1999) Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol Plant 105:321–329

    Article  CAS  Google Scholar 

  • Klomp LWJ, Gitlin JD (1996) Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. Hum Mol Genet 5:1989–1996

    Article  CAS  Google Scholar 

  • Kolmeier KH, Silverstein MN, Fleisher GA (2006) Anaerobic glycolysis in normal and leukemic bone-marrow leukocytes: effect of methyl-glyoxal-bis-guanylhydrazone dihydrochloride. Cancer 19:1195–1199

    Article  Google Scholar 

  • Lee JH, Horak CE, Khanna C, Meng Z, Yu LR, Veenstra TD, Steeg PS (2008) Alterations in Gemin5 expression contribute to alternative mRNA splicing patterns and tumor cell motility. Cancer Res 68:639–644

    Article  CAS  Google Scholar 

  • Li XF, O’Donoghue JA (2008) Hypoxia in microcospic tumors. Cancer Lett 264:172–180

    Article  CAS  Google Scholar 

  • Li D, Marks JD, Schumacker PT, Young RM, Brorson JR (2005) Physiological hypoxia promotes survival of cultured cortical neurons. Eur J Neurosci 22:1319–1326

    Article  Google Scholar 

  • Li YW, Li L, Zhao JY (2008) An inhibition of ceruloplasmin expression induced by cerebral ischemia in the cortex and hippocampus of rats. Neurosci Bull 24:13–20

    Article  Google Scholar 

  • Liso R, De Tullio MC, Ciraci S, Balestrini R, La Rocca N, Bruno L, Chiappetta A, Bitonti MB, Bonfante P, Arrigoni O (2004) Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima, L. J Exp Bot 55:2589–2597

    Article  CAS  Google Scholar 

  • Martinive P, Defresne F, Bouzin C, Saliez J, Lair F, Gregoire V, Michiels C, Dessy C, Feron O (2006) Preconditioning of tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Res 66:11736–11744

    Article  CAS  Google Scholar 

  • Mei G, Di Venere A, Nicolai E, Rosato N, Finazzi-Agrò A (2003) Probing the conformational stability of two different copper proteins: a dynamic fluorescence study on azurin and ascorbate oxidase. J Fluoresc 13:33–39

    Article  CAS  Google Scholar 

  • Messerschmidt A (1997) Spatial structures of ascorbic oxidases, laccase and related proteins: implications for the catalytic mechanism. In: World Scientific Publishing Co. Pte. Ltd (ed) Multi-copper oxidases, chap 2. pp 23–80

  • Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruplasmin. Eur J Biochem 187:341–352

    Article  CAS  Google Scholar 

  • Musci G (2001) Ceruloplasmin, the unique multi-copper oxidase of vertebrates. Prot Pept Lett 8:159–169

    Article  CAS  Google Scholar 

  • Nakamura K, Go N (2005) Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 62:2050–2066

    Article  CAS  Google Scholar 

  • Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, Becker A, Adam M, Molls M, Dunst J, Terris DJ, Overgaard J (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77:18–24

    Article  Google Scholar 

  • Patel BN, David S (1997) A novel GPI_anchored form of ceruloplasmin expressed by astrocytes. J Biol Chem 272:20185–20190

    Article  CAS  Google Scholar 

  • Ribatti D, Nico B, Crivellato E, Vacca A (2007) The structure of the vascular network of tumors. Cancer Lett 248:18–23

    Article  CAS  Google Scholar 

  • Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771

    Google Scholar 

  • Spencer HJ (1939) The effect of puncturing individual latex tubes of Euphorbia Wulfenii. Ann Bot 3:4–9

    Google Scholar 

  • Thomas T, Macpherson A, Rogers P (1995) Ceruloplasmin gene expression in the rat uterus. Biochim Biophys Acta 1261:77–82

    Google Scholar 

  • Vasin AV, Platonova NA, Klotchenko SA, Tsymbalenko NV, Puchkova LV (2004) Expression of ceruloplasmin pseudogene in cultured human cells. Doklady Biochem Biophys 397:254–257

    Article  CAS  Google Scholar 

  • Vasin AV, Platonova NA, Povalihin RG, Klotchenko SA, Samsonov SA, Tsymbalenko NV, Puchkova LV (2005) Mitochondrial ceruplasmin of mammals. Mol Biol 39:42–52

    Article  CAS  Google Scholar 

  • Vizàn P, Alcarraz-Vizàn G, Diaz-Moralli S, Solovjeva ON, Frederiks WM, Cascante M (2009) Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. Int J Cancer 124:2789–2796

    Article  CAS  Google Scholar 

  • Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 85:9533–9537

    Article  CAS  Google Scholar 

  • Zowczak M, Iskra M, Paszkowski J, Manczak M, Torlinski L, Wysocka E (2001) Oxidase activity of ceruloplasmin and concentrations of copper and zinc in serum of cancer patients. J Trace Elem Med Biol 15:193–196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. H. J. McArdle for the gift of Fig. 2 [reprinted from Danzeisen R, Ponnambalam S, Lea RG, Page K, Gambling L, McArdle HJ (2000) The effect of ceruloplasmin on iron release from placental (BeWo) cells: evidence for an endogenous Cu oxidase. Placenta 21:805–812. With permission from Elsevier].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Arrigoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arrigoni, R., Arrigoni, O. Multicopper oxidases: an innovative approach for oxygen management of aerobic organisms. Rend. Fis. Acc. Lincei 21, 71–80 (2010). https://doi.org/10.1007/s12210-009-0071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-009-0071-7

Keywords

Navigation